A Developmental Biologist’s View on Cancer

  • Francois Gros
  • Marc Fiszman
  • Didier Montarras
Part of the NATO ASI Series book series (NSSA, volume 120)


It makes very little doubt that if the causes for cancer are legion (cancer being a multifactorial disease) they must nonetheless involve a common genetic denominator. The very nature of this “substratum” has escaped for some time until the relatively recent discovery that oncogenic sequences of retroviruses do in fact originate from cellular oncogenic genes, designated as proto-oncogenes, cellular oncogenes or c-oncs for short (1,2).


Viral Oncogene Rous Sarcoma Virus Exogenous Signal Cellular Oncogene Avian Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Bishop, Cellular oncogenes and retroviruses, Ann. Rev. Biochem. 52: 301 (1983).PubMedCrossRefGoogle Scholar
  2. H. E. Varmus, The molecular genetics of cellular oncogenes, Ann. Rev. Genet. 18:553 (1984).Google Scholar
  3. 3.
    R. J. Huebner and G. J. Todaro, Oncogenes of RNA tumor viruses as determinants of cancer, Proc. Natl. Acad. Sci. 64: 1087 (1969).CrossRefGoogle Scholar
  4. 4.
    G. J. Todaro and R. J. Huebner, The viral oncogene hypothesis: New evidence, Proc. Natl. Acad. Sci. 69: 1009 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    J. P. Bader, The requirement for DNA synthesis in the growth of Rous Sarcoma and Rous associated Viruses, Virology 26: 253 (1965).Google Scholar
  6. 6.
    H. M. Temin and S. Mizutani, RNA directed DNA polymerase in virions of Rous sarcoma virus, Nature 226: 1211 (1970).Google Scholar
  7. 7.
    D. Baltimore, RNA dependent DNA polymerase in virions of RNA tumor viruses, Nature 226: 1209 (1970).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA, Nature 260: 170 (1976).Google Scholar
  9. 9.
    D. H. Spector, H. E. Varmus, and J. M. Bishop, Nucleotide sequences related to the transforming gene of avian sarcoma virus are present in the DNA of uninfected vertebrates, Proc. Natl. Acad. Sci. 75: 4102 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Hunter and J. A. Cooper, Protein tyrosine kinases, Ann. Rev. Biochem. 54: 897 (1985).CrossRefGoogle Scholar
  11. B. M. Sefton, The viral tyrosine protein kinases, Curr. Top. Microbiol. Immunol. 129:39 (1986).Google Scholar
  12. 12.
    J. K. Klarlund, Transformation of cells by an inhibitor of phosphatase acting on phosphotyrosine in proteins, Cell 41: 707 (1985).Google Scholar
  13. 13.
    M. A. Snyder, J. M. Bishop, J. P. McGrath, and A. D. Levinson, A v-src mutation of the ATP binding site of pp60 abolishes kinase activity, transformation and tumorigenicity, J. Mol. Cell. Biol. 5: 1772 (1985).Google Scholar
  14. 14.
    C. H. Heldin and B. Westermark, Growth factors: mechanism of action and relation to oncogenes, Cell 37: 9 (1984).Google Scholar
  15. 15.
    M. D. Waterfield, T. Scrace, N. Whittle, P. Stroobant, A. Johnson, A. Wasteson, B. Westermark, C. H. Heldin, J.S. Huang, and T.F. Deuel, Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus, Nature 304: 35 (1983).Google Scholar
  16. 16.
    J. Downward, Y. Yarden, E. Mayes, G. Scrace, N. Totty, P. Stockwell, A. Ullrich, J. Schlessing, and M. D. Waterfield, Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences, Nature 307: 521 (1984).Google Scholar
  17. 17.
    A. Ullrich, L. Coussens, J. S. Hayflick, T. J. Dull, A. Gray, A.W. Tam, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, J. Downward, E.L.V. Mayes, N. Whittle, M. D. Waterfield, and P.H. Seeburg, Human epidermal growth factor receptor cDNA sequences and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells, Nature 309: 418 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    C. I. Bargmann, Mien-Chie Hung, and R. A. Weinberg, The neu oncogene encodes an epidermal growth factor receptor-related protein, Nature 319: 226 (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Yamamoto, S. Ikawa, T. Akiyama, K. Semba, N. Nomura, N. Miyajima, T. Saito, and K. Toyoshima, Similarity of protein encoded by the human c-erb B-2 gene to epidermal growth factor receptor, Nature 319: 230 (1986).PubMedCrossRefGoogle Scholar
  20. 20.
    C. J. Sherr, C. W. Rettenmier, R. Sacca, M. Roussel, A.T. Look, and E.R. Stanley, The c-fms proto-oncogene product is related to the receptor of the mononuclear phagocyte growth factor CSF-1, Cell 41: 665 (1985).Google Scholar
  21. 21.
    J. M. Bishop, Viral oncogenes, Cell 42: 23 (1985).Google Scholar
  22. R. Dhar, A. Nieto, R. Koller, D. Defoe-Jones, and E.M. Scolnick, Nucleotide sequence of two rasH related genes isolated from the yeast Saccharomyces cerevisiae, Nucleic Acids Res. 12:3611 (1984)Google Scholar
  23. 23.
    S. Powers, S. Kataoka, O. Fasano, M. Goldfarb, J. Strathern, J.B. Broach, and M. Wigler, Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins, Cell 36: 607 (1984).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Toda, I. Uno, T. Ishikawa, S. Powers, T. Kataoka, D. Broek, S. Cameron, J. Broach, K. Matsumoto, and M. Wigler, In yeast ras proteins are controlling elements of adenylate cyclase, Cell 40:27 (1985).Google Scholar
  25. 25.
    S. K. Beckner, S. Hattori, and T. Shih, The ras oncogene product p21 is not a regulatory component of adenylate cyclase, Nature 317: 71 (1985).Google Scholar
  26. 26.
    C.J. Tabin, S.M. Bradley, C.I. Bergmann, R. Weinberg, A.G. Papageorge, E.M. Scolnick, R. Dhar, D.R. Lowy, and E.H. Chang, Mechanism of activation of a human oncogene, Nature 300: 143 (1982)Google Scholar
  27. 27.
    E. Premkumar-Reddy, R.K. Reynolds, E. Santos, and M. Barbacid, A point mutation is responsible for the acquisition of transforming properties by T24 human bladder carcinoma oncogene, Nature 300: 149 (1982).Google Scholar
  28. 28.
    G. Klein and E. Klein, Evolution of tumours and the impact of molecular oncology, Nature 315: 190 (1985).Google Scholar
  29. 29.
    M. Robertson, Message of myc in context, Nature 309: 585 (1984).Google Scholar
  30. 30.
    P. Leder, J. Battey, G. Lenoir, C. Moulding, W. Murphy, H. Potter, T. Stewart, and R. Taub, Translocations among antibody genes in human cancer, Science 222: 765 (1983).Google Scholar
  31. 31.
    J.B. Konopka, S.M. Watanabe, J.W. Singer, S.J. Collins, anal O.N. Witte, Cell lines and clinical isolates derived from Ph -positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration, Proc. Natl. Acad. Sci. 82: 1810 (1985).Google Scholar
  32. 32.
    M. Schwab, J. Ellison, M. Busch, W. Rosenau, H.E. Varmus, and J.M. Bishop, Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma, Proc. Natl. Acad. Sci. 81: 4940 (1984).CrossRefGoogle Scholar
  33. 33.
    D.A. Spandidos and N.M. Wilkie, Malignant transformation of early passage rodent cells by a single mutated human oncogene, Nature 310: 469 (1984).Google Scholar
  34. 34.
    S.C. Bernstein and R.A. Weinberg, Expression of the metastatic phenotype in cells transfected with human metastatic tumor DNA, Proc. Natl. Acad. Sci. 82: 1726 (1985).CrossRefGoogle Scholar
  35. 35.
    M.A. Simon, T.B. Kornberg, and J.M. Bishop, Three loci related to the src oncogene and tyrosine specific protein kinase activity, Nature 302: 837 (1983).Google Scholar
  36. 36.
    M.A. Simon, B. Drees, T. Kornberg, and J.M. Bishop, The nucleotide sequence and the tissue specific expression of Drosophila c-src, Cell 42: 831 (1985).Google Scholar
  37. 37.
    F.M. Hoffmann, L.D. Fresco, H. Hoffmann-Falk, and B.Z. Shilo, Nucleotide sequences of the Drosophila src and abl homologs: conservation and variability in the src family oncogenes, Cell 35: 393 (1983).Google Scholar
  38. 38.
    E. Lineh, L. Glazer, D. Segal, J. Schlessinger, and B.Z. Shilo, The Drosophila EGF Receptor gene homog: conservation of both hormone binding and kinase domains, Cell 40: 599 (1985).Google Scholar
  39. 39.
    F.S. Neuman-Silberberg, E. Schejter, F.M. Hoffman, and B. Shilo, The Drosophila ras oncogenes: structure and nucleotide sequence, Cell 37: 1027 (1984).Google Scholar
  40. 40.
    B. Mozer, R. Marlor, S. Parkhurst, and V. Corces, Characterization and developmental expression of a Drosophila ras oncogene, J. Mol. Cell. Biol. 5: 885 (1985).Google Scholar
  41. 41.
    A.L. Katzen, T.B. Kornberg, and J.M. Bishop, Isolation of the protooncogene c-myb from D. melanogaster Cell 41: 449 (1985).Google Scholar
  42. 42.
    M.Y. Fishman and P. Fuchs, Temperature sensitive expression and differentiation in transformed myoblasts, Nature 254: 429 (1975).Google Scholar
  43. 43.
    D. Boettiger, K. Roby, J. Brumbaugh, J. Bielh, and H. Holtzer, Transformation of chicken embryo retinal melanoblasts by a temperature sensitive mutant of Rous Sarcoma Virus, Cell 11: 881 (1977).Google Scholar
  44. 44.
    M. Pacifici, D. Boettiger, K. Roby, and H. Holtzer, Transformation of chondroblasts by Rous Sarcoma Virus and synthesis of sulphated proteoglycan matrix, Cell 11: 891 (1977).Google Scholar
  45. 45.
    H. Weintraub, H. Beug, M. Groudine, and T. Graf, Temperature sensitive changes in the structure of globin chromatin in lines of red cell precursor transformed by is AEV, Cell 28: 931 (1982).PubMedCrossRefGoogle Scholar
  46. 46.
    G. Falcone, D. Boettiger, S. Alema, and F. Tato, Role of cell division in differentiation of myoblasts infected with a temperature sensitive mutant of Rous sarcoma virus, EMBO Journal 3: 1327 (1984).Google Scholar
  47. 47.
    L.K. Sorge, B.T. Levy, and P.F. Maness, pp60c-src is developmentally regulated in the neural retina, Cell 36: 249 (1984).Google Scholar
  48. D.W. Fults, A.C. Towle, J.M. Lauder, and P.F. Maness, pp60src in the developing cerebellum, J. Mol. Cell. Biol. 5:27 (1985).Google Scholar
  49. 49.
    J.S. Brugge, P.C. Cotton, A.E. Queral, J.N. Barrett, D. Nonner, and R.W. Keane, Neurons ex ress high level of a structurally modified activated form of pp60~-src Nature 316: 554 (1985).Google Scholar
  50. T.J. Gonda, D.K. Sheiness, and J.M. Bishop, Transcripts from the cellular homologues of retroviral oncogenes: Distribution among chicken tissues, J. Mol. Cell. Biol. 2:617 (1982).Google Scholar
  51. 51.
    R. Müller, D.J. Salmon, J.M. Tremblay, M.J. Cline, and I.M. Verma, Differential expression of cellular oncogenes during pre-and post-natal development of the mouse, Nature 299: 640 (1982).Google Scholar
  52. 52.
    R. Müller, J.M. Tremblay, E.D. Adamson, and I.M. Verna, Tissue and cell type specific expression of two human c-onc genes, Nature 304: 454 (1983).Google Scholar
  53. 53.
    S. Alema, P. Casalbore, E. Agostini, and F. Tato, Differentiation of PC12 phaeochromocytoma cells induced by v-src oncogene, Nature 316: 557 (1985).Google Scholar
  54. 54.
    J. Campisi, H.E. Gray, A.B. Pardee, M. Dean, and G.E. Sonenshein, Cell cycle control of c-myc but not c-ras expression is lost following chemical transformation, Cell 36: 241 (1984).PubMedGoogle Scholar
  55. 55.
    K. Kelly, B.H. Cochran, C.D. Stiles, and P. Leder, Cell specific regulation of the c-myc gene by lymphocyte mitogens and platelet derived growth factor, Cell 35: 603 (1983).Google Scholar
  56. 56.
    W. Kruijer, J.A. Cooper, T. Hunter, and I.M. Verna, Platelet-derived growth factor induces rapid but transient expression of the c-fos gene and protein, Nature 312: 711 (1984).Google Scholar
  57. 57.
    R. Müller, R. Bravo, J. Burckhardt, and T. Curran, Induction of c-fos gene and protein by growth factor precedes activation of c-myc, Nature 312: 716 (1984).Google Scholar
  58. 58.
    M.E. Greenberg, L.A. Greene, and E.B. Ziff, Evidence for a common program of proto-oncogene expression induced by diverse growth factors, in: “Current communications in Molecular Biology, Eukaryotic Transcription, The Role of cis-and trans-acting elements in initiation”, Y. Gluzman, ed., Cold Spring Harbor Laboratory, p. 161 (1985).Google Scholar
  59. 59.
    R. Müller, T. Curran, D. Müller, and L. Gilbert, Induction of c-fos during myelomonocytic differentiation and macrophage proliferation, Nature 314: 546 (1985).Google Scholar
  60. 60.
    C.B. Thompson, P.B. Challoner, P.E. neiman, and M. Groudine, Expression of the c-myb proto-oncogene during cellular proliferation, Nature 319: 374 (1986).Google Scholar
  61. 61.
    M. J. Berridge and R. F. Irvine, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315 1984 ).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Francois Gros
    • 1
  • Marc Fiszman
    • 1
  • Didier Montarras
    • 1
  1. 1.Department of Molecular BiologyInstitut PasteurParisFrance

Personalised recommendations