Advertisement

Interaction between Polymers

  • János J. Ladik

Abstract

Murell et al.(1) have shown that if one develops a perturbation theory with overlap to be applied if the overlap integral S < 0.1, namely the two interacting molecules are at least 2.8–3.0 Å apart, then one obtains the interaction energy between two molecules A and B as a power-series expansion in the intermolecular potential U and the overlap integral S. Up to the order of U 2 S 2 the interaction energy terms are
$$\Delta {{E}^{\text{PT}}}={{E}_{\text{el st}}}+{{E}_{\text{pol}}}+{{E}_{\text{exch}}}+{{E}_{\text{ch tr}}}+{{E}_{\text{disp}}}+{{E}_{\text{exch pol}}}+{{E}_{\text{exch disp}}}$$
(6.1)
Here the terms E el st, E po1, and E disp are of zeroth order in overlap and have the same form as in zero-overlap perturbation theory. The contribution of order US 2 leads to the exchange energy E exch and the energy contributions of order U 2 S 2 may be subdivided into the charge transfer energy E ch tr and the exchange polarization and exchange dispersion terms due to the exchange. Since the latter two terms are much smaller than the others, one can neglect them in the calculations.

Keywords

Point Charge Polypeptide Backbone Charge Transfer Energy Helical Parameter Empty Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. N. Murrell, M. Randic, and O. R. Williams, Proc. R. Soc. London, Ser. A 284, 566 (1965).CrossRefGoogle Scholar
  2. 2.
    R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).CrossRefGoogle Scholar
  3. 3.
    See, for instance, R. Rein, P. Claverie, and J. Pollak, Int. J. Quantum Chem. 2, 129 (1968).Google Scholar
  4. 4.
    E. F. Haugh and J. O. Hirschfelder, J. Chem. Phys. 23, 1778 (1955).CrossRefGoogle Scholar
  5. 5.
    K. Laki and J. Ladik, Int. J. Quantum Chem., Quantum Biol. Symp. 3, 51 (1976).Google Scholar
  6. 6.
    F. Beleznay, S. Suhai, and J. Ladik, Int. J. Quantum Chem. 20, 683 (1981).CrossRefGoogle Scholar
  7. 7.
    A. Imamura, S. Suhai, and J. Ladik, J. Chem. Phys. 76, 6067 (1982).CrossRefGoogle Scholar
  8. 8.
    P. Otto and J. Ladik, Chem. Phys. 8, 192 (1975).CrossRefGoogle Scholar
  9. 9.
    P. Otto, Chem. Phys. 33, 407 (1978).CrossRefGoogle Scholar
  10. 10.
    P. Otto, Int. J. Quantum Chem. 28, 895 (1985).Google Scholar
  11. 11.
    P. Otto and J. Ladik, Chem. Phys. 19, 209 (1977).CrossRefGoogle Scholar
  12. 12.
    J. M. Foster and S. F. Boys, Rev. Mod. Phys. 32, 300 (1960)CrossRefGoogle Scholar
  13. S. F. Boys, Rev. Mod. Phys. 32, 306 (1960)Google Scholar
  14. S. F. Boys, in: Quantum Theory of Atoms, Molecules and the Solid State ( P.-O. Löwdin, ed.), p. 253, Academic Press, New York-London (1966).Google Scholar
  15. 13.
    B. Gaissmaier, W. Honecker, R. Unbehauen, and W. Werhalm, Frequenz, Vol. 29, No. 5 (1975).Google Scholar
  16. 14.
    K. S. Pfitzer, Adv. Chem. Phys. 2, 59 (1959).CrossRefGoogle Scholar
  17. 15.
    Y. K. Kang and M. S. Jhon, Theor. Chim. Acta 61, 41 (1982).CrossRefGoogle Scholar
  18. 16.
    P. Otto, Chem. Phys. Lett. 62, 538 (1979).CrossRefGoogle Scholar
  19. 17.
    W. Forner, P. Otto, J. Bernhardt, and J. Ladik, Theor. Chim. Acta 60, 269 (1981).Google Scholar
  20. 18.
    L. Ladik, Int. J. Quantum Chem. S9, 563 (1975).CrossRefGoogle Scholar
  21. 19.
    P. Otto, Int. J. Quantum Chem. 30, 275 (1986).CrossRefGoogle Scholar
  22. 20.
    P. Otto, E. Clementi, J. Ladik, and F. Martino, J. Chem. Phys. 80, 5294 (1984).CrossRefGoogle Scholar
  23. 21.
    L. J. Kleinsmith, J. Heidema, and A. Carroll, Nature 22, 1025 (1970)CrossRefGoogle Scholar
  24. C. S. Teng, C. T. Teng, and V. G. Allfrey, J. Biol. Chem. 246, 3597 (1971).Google Scholar
  25. 22.
    J. Hindley, Biochem. Biophys. Res. Commun. 12, 175 (1963)CrossRefGoogle Scholar
  26. G. C. Barr and J. A. V. Butler, Nature 199, 1170 (1963).CrossRefGoogle Scholar
  27. 23.
    G. Zubay and P. Doty, J. Mol. Biol. 1 (1959).Google Scholar
  28. 24.
    M. H. F. Wilkins, G. Zubay, and R. H. Wilson, Trans. Faraday Soc. 55, 497 (1959).Google Scholar
  29. 25.
    V. Luzzati and N. Nicolaieff, J. Mol. Biol. 7, 142 (1963).CrossRefGoogle Scholar
  30. 26.
    K. Adler, K. Beyreuther, E. Fanning, N. Geisler, B. Gronenborn, A. Klemm, B. Müller-Hill, M. Pfahl, and A. Schmitz, Nature 237, 322 (1972).CrossRefGoogle Scholar
  31. 27.
    K. Beyreuther, K. Adler, N. Geisler, and A. Klemm, Proc. Natl. Acad. Sci. U.S.A. 70, 3576 (1973).CrossRefGoogle Scholar
  32. 28.
    W. F. Anderson, D. H. Ohlendorf, Y. Takeda, and B. W. Mattheus, Nature 290, 754 (1981).CrossRefGoogle Scholar
  33. 29.
    D. B. McKay and T. A. Steitz, Nature 290, 744 (1981).CrossRefGoogle Scholar
  34. 30.
    C. O. Pabo and M. Lewis, Nature 298, 443 (1982).CrossRefGoogle Scholar
  35. 31.
    G. M. Church, J. L. Sussman, and S. H. Kim, Proc. Natl. Acad. Sci. U.S.A. 74, 1458 (1977).CrossRefGoogle Scholar
  36. 32.
    D. H. Ohlendorf, W. F. Anderson, R. G. Geisler, Y. Takeda, and B. W. Matthews, Nature 298, 718 (1982).CrossRefGoogle Scholar
  37. 33.
    S. Nir, R. Garduno, R. Rein, Y. Coeckelenberg, and P. D. Macelroy, Int. J. Quantum Chem., Symp. 4, 135 (1977)Google Scholar
  38. S. Nir, R. Garduno, and R. Rein, Polymer 18, 431 (1976).CrossRefGoogle Scholar
  39. 34.
    R. Rein, R. Garduno, J. T. Egan, and S. Columbano, Biosystems 9, 131 (1977).CrossRefGoogle Scholar
  40. 35.
    R. Rein, R. Garduno, J. T. Egan, S. Columbano, Y. Coeckelenberg, and R. D. Macelroy, Orgins Life, 265 (1978).Google Scholar
  41. 36.
    R. Garduno, K. Haydock, R. D. Macelroy, and R. Rein, Ann. N.Y. Acad. Sci. 281 (1981).Google Scholar
  42. 37.
    R. Day, F. Martino, and J. Ladik, J. Theor. Biol. 84, 451 (1980).CrossRefGoogle Scholar
  43. 38.
    R. Fieldman, Document 13.2.1.1.1., National Institutes of Health, Bethesda, Washington (1976).Google Scholar
  44. 39.
    P. Otto, E. Clementi, and J. Ladik, J. Chem. Phys. 78, 4547 (1983).CrossRefGoogle Scholar
  45. 40.
    S. Columbano and R. Rein, Comput. Programs 11, 3 (1980).CrossRefGoogle Scholar
  46. 41.
    J. Ladik and S. Suhai, Chem. Rev. 80, 263 (1980).CrossRefGoogle Scholar
  47. 42.
    A. Imamura, S. Suhai, and J. Ladik, J. Chem. Phys. 76, 6067 (1982).CrossRefGoogle Scholar
  48. 43.
    J. Ladik, Int. J. Quantum Chem., Symp. 9, 563 (1975)CrossRefGoogle Scholar
  49. J. Ladik and S. Suhai, in: Molecular Interactions ( H. Ratajczak and W. J. Orville-Thomas, eds.), p. 151, John Wiley and Sons, New York (1980)Google Scholar
  50. J. Ladik, in: Recent Advances in the Quantum Theory of Polymers ( J.-M. André, J.-L. Brédas, J. Delhalle, J. Ladik, G. Leroy, and C. Moser, eds.), p. 155, Springer-Verlag, Berlin (1980).CrossRefGoogle Scholar
  51. 44.
    R. Feughelmann, R. Langridge, W. E. Seeds, A. R. Stokes, H. R. Wilson, L. W. Hooper, M. H. F. Wilkins, R. K. Barcklay, and L. D. Hamilton, Nature 175, 834 (1955).CrossRefGoogle Scholar
  52. 45.
    P. Otto, E. Clementi, and G. Corongiu (unpublished).Google Scholar
  53. 46.
    E. Clementi, in: Computational Aspects for Large Chemical Systems, Lecture Notes in Chemistry, Vol. 19, Springer-Verlag, New York (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • János J. Ladik
    • 1
  1. 1.University of Erlangen-NurembergErlangen-WaterlooFederal Republic of Germany

Personalised recommendations