Semiempirical Band-Structure Calculations

  • János J. Ladik


Different semiempirical crystal-orbital (CO) methods have been used to calculate the energy-band structures of one-dimensional periodic chains with larger unit cells (such as periodic DNA or protein models, TCNQ and TTF stacks) or of two-dimensional periodic protein models. The π-electron structure of the different periodic DNA stacks and of the H-N-C = O...H-N-C = O... chain in polypeptides has been calculated with the aid of the Pariser-Parr-Pople (PPP) CO method for one-dimensional systems, while for the sugar-phosphate chain of DNA [poly(SP)], for the homopolynucleotides, and for the one-dimensional polypeptide and polyglycine chains, the CNDO/2 and MINDO/2 methods for one-dimensional systems have been applied. Finally, in the case of the two-dimensional polyformamide and polyglycine systems the two-dimensional versions of the all-valence-electron CO methods discussed earlier have been used. Here we shall show in detail how to obtain expressions pertaining to the PPP CO method for linear chains starting from the corresponding ab initio equations. In the case of the other semiempirical CO methods only the final expressions will be given.


Conduction Band Valence Band Band Structure Glycine Molecule Core Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. E. Peacock and R. Mcweeny, Proc. R. Soc. London 74, 385 (1959);CrossRefGoogle Scholar
  2. J. Ladik, Acta Phys. Acad. Sci. Hung. 18, 185 (1965).CrossRefGoogle Scholar
  3. 2.
    R. Pariser and R. G. Parr, J. Chem. Phys. 21, 466, 707 (1953);Google Scholar
  4. J. A. Pople, Trans. Faraday Soc. 49, 375 (1953).CrossRefGoogle Scholar
  5. 3.
    J. Ladik, D. K. Rai, and K. Appel, J. Mol. Spectrosc. 27, 72 (1968);CrossRefGoogle Scholar
  6. J. Ladik, in: Electronic Structure of Polymers and Molecular Crystals ( J.-M. andré and J. Ladik, eds.), p. 663, Plenum Press, London-New York (1975).Google Scholar
  7. 4.
    J. Hinze and J. Jaffé, J. Am. Chem. Soc. 84, 540 (1962).CrossRefGoogle Scholar
  8. 5.
    N. Mataga and K. Nishimoto, Z. Phys. Chem. 13, 140 (1977).CrossRefGoogle Scholar
  9. 6.
    J. Ladik, Acta, Phys. Acad. Sci. Hung. 18, 173 (1965).CrossRefGoogle Scholar
  10. 7.
    J. Koutecky and R. Zahradnik, Collect. Czech. Chem. Commun. 25, 811 (1960);Google Scholar
  11. J. Ladik and K. Appel, J. Chem. Phys. 40, 2470 (1964).CrossRefGoogle Scholar
  12. 8.
    J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys. 43, 129 (1965);CrossRefGoogle Scholar
  13. J. A. Pople and G. A. Segal, J. Chem. Phys. 43, 136 (1965).CrossRefGoogle Scholar
  14. 9.
    J. Ladik and G. Biczo, Acta Chim. Acad. Sci. Hung. 64, 397 (1971);Google Scholar
  15. H. Fujita and A. Imamura, J. Chem. Phys. 53, 4555 (1970);CrossRefGoogle Scholar
  16. K. Morokuma, J. Chem. Phys. 54, 962 (1971).CrossRefGoogle Scholar
  17. 10.
    J. A. Pople and D. C. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill Publ. Co., New York (1970).Google Scholar
  18. 11.
    N. C. Baird and M. J. S. Dewar, J. Chem. Phys. 54, 1262 (1967).Google Scholar
  19. 12.
    S. Suhai and J. Ladik, Theor. Chem. Acta 28, 27 (1972);CrossRefGoogle Scholar
  20. S. Suhai and J. Ladik, Acta Chim. Hung. 82, 67 (1974).Google Scholar
  21. 13.
    K. Ohno, Theor. Chim. Acta 2, 219 (1964);CrossRefGoogle Scholar
  22. G. Klopman, J. Am. Chem. Soc. 87, 3300 (1965).CrossRefGoogle Scholar
  23. 19.
    S. Suhai and J. Ladik, Int. J. Quantum Chem. 7, 547 (1973).CrossRefGoogle Scholar
  24. 15.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys., Suppl. 47, 2026 (1967);Google Scholar
  25. R. N. Dixon, Mol. Phys. 12, 83 (1967).CrossRefGoogle Scholar
  26. 16.
    D. L. Beveridge, I. Jano, and J. Ladik, J. Chem. Phys. 56, 4744 (1972).CrossRefGoogle Scholar
  27. 17.
    R. Hoffmann, J. Chem. Phys. 39, 1397 (1963).CrossRefGoogle Scholar
  28. 18.
    See, for instance, J.-M. André, in: Electronic Structure of Polymers and Molecular Crystals ( J.-M. André and J. Ladik, eds.), p. 1, Plenum Press, London-New York (1975).Google Scholar
  29. 19.
    M. J. S. Dewar and E. Haselbach, J. Am. Chem. Soc. 92, 590 (1970).CrossRefGoogle Scholar
  30. 20.
    S. O’shea and D. P. Santry, J. Chem. Phys. 54, 2667 (1971).CrossRefGoogle Scholar
  31. 21.
    A. Karpfen, J. Ladik, G. Stollhoff, and P. Fulde, Chem. Phys. 8, 215 (1975).CrossRefGoogle Scholar
  32. 22.
    See, for instance, J. H. Wilkinson, The Algebraic Eigenvalue Problem, p. 515, Clarendon Press, Oxford (1965).Google Scholar
  33. 23.
    R. E. Long, R. A. Sparks, and K. N. Trueblood, Acta Crystallogr. 18, 932 (1965).CrossRefGoogle Scholar
  34. 24.
    W. F. Cooper, N. C. Hemy, J. W. Edmonds, A. Nagel, F. Wudl, and P. Coppens, Chem. Commun. 889 (1971).Google Scholar
  35. 25.
    D. Allender, J. W. Bray, and J. Bardeen, Phys. Rev. B9, 119 (1974);Google Scholar
  36. A. A. Bright, A. F. Garito, and A. J. Heeger, Solid State Commun. 13, 943 (1973).CrossRefGoogle Scholar
  37. 26.
    M. Spencer, Acta Crystallogr. 12, 59–66 (1959).CrossRefGoogle Scholar
  38. 27.
    R. Langridge, J. Marvin, W. Seeds, H. R. Wilson, C. W. Hooper, M. H. F. Wilkins, and L. D. Hamilton, J. Mol. Biol. 2, 38 (1960).CrossRefGoogle Scholar
  39. 28.
    L. Pauling and R. B. Corey, Proc. Natl. Aci. Sci. U.S.A. 39, 253 (1953).CrossRefGoogle Scholar
  40. 29.
    J. Avery, J. Packer, J. Ladik, and G. Biczo, J. Mol. Spectrosc. 29, 194 (1969).CrossRefGoogle Scholar
  41. 30.
    B. F. Rozsnyai, F. Martino, and J. Ladik, J. Chem. Phys. 52, 5708 (1970).CrossRefGoogle Scholar
  42. 31.
    S. Suhai and J. Ladik, Int. J. Quantum Chem. 7, 547 (1973).CrossRefGoogle Scholar
  43. 32.
    S. Suhai, Biopolymers, 13, 1739 (1974).CrossRefGoogle Scholar
  44. 33.
    J. Ladik, in: Advances in Quantum Chemistry ( P.-O. Löwdin, ed.), p. 397, Academic Press, New York-London (1973).Google Scholar
  45. 34.
    S. Suhai, J. Chem. Phys. 57, 5599 (1972).CrossRefGoogle Scholar
  46. 35.
    A. Bierman and J. Ladik (unpublished).Google Scholar
  47. 36.
    B. F. Rozsnyai and J. Ladik, J. Chem. Phys. 52, 5711 (1970).CrossRefGoogle Scholar
  48. 37.
    B. F. Rozsnyai and J. Ladik, J. Chem. Phys. 53, 4325 (1970).CrossRefGoogle Scholar
  49. 38.
    G. L. Eichhorn and Y. A. Shin, J. Am. Chem. Soc. 90, 7323 (1970);CrossRefGoogle Scholar
  50. P. Cheng, D. Honbo, and J. Rozsnyai, Biochemistry 1, 239 (1969).Google Scholar
  51. 39.
    J. Josse, A. D. Kaiser, and A. Kornberg, J. Biol. Chem. 236, 864 (1961); see also a recent statistical analysis of longer nucleic acid sequences:Google Scholar
  52. J. F. Gentleman, M. A. Shadbolt-Forbes, J. W. Hawkins, J. Ladik, and W. F. Forbes, Mathematical Scientist 9, 125 (1984).Google Scholar
  53. 39.
    S. Suhai, Theor. Chim. Acta 34, 157 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • János J. Ladik
    • 1
  1. 1.University of Erlangen-NurembergErlangen-WaterlooFederal Republic of Germany

Personalised recommendations