Advertisement

Examples of Ab Initio Calculations on Quasi-One-Dimensional Polymers

  • János J. Ladik

Abstract

This chapter presents some examples of the application of the ab initio crystal-orbital method described in Chapter 1. Though these applications range from the field of plastics (polyethylene and its fluoro derivatives) through highly conducting polymers [polyacetylenes and polydiacetylenes, (SN) x , TCNQ and TTF stacks] to biopolymers (homopolynucleotides and homopolypeptides), they are only illustrative. No attempt has been made to review the numerous other applications performed by the Namur group and by other researchers, as this would increase unduly the size of this book.

Keywords

Conduction Band Valence Band Band Structure Charge Shift Fluoro Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. L. Mccubbin and R. Hanner, Chem. Phys. Lett.2, 230 (1968).Google Scholar
  2. 2.
    K. Morokuma, Chem. Phys. Lett.6, 186 (1970).Google Scholar
  3. 3.
    D. L. Beveridge, I. Jano, and J. Ladik, J. Chem. Phys.56, 4744 (1972).Google Scholar
  4. 4.
    J.-M. André, in: Electronic Structure of Polymers and Molecular Crystals ( J.-M. André and J. Ladik, eds.), p. 1, Plenum Press, London-New York (1975).Google Scholar
  5. 5.
    J.-M. André, Comput. Phys. Commun.1, 39 (1970).Google Scholar
  6. 6.
    S. Suhai, J. Polym. Sci., Polym. Phys. Ed.21, 1341 (1983)Google Scholar
  7. S. Suhai, in: Quantum Chemistry of Polymers; Solid State Aspects ( J. Ladik and J.-M. André, eds.), p. 101, D. Reidel Publ. Co., Dordrecht-Boston, 1984.Google Scholar
  8. 7.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys.51, 2657 (1969).Google Scholar
  9. 8.
    R. Ditchfield, J. W. Hehre, and J. A. Pople, J. Chem. Phys.54, 724 (1971).Google Scholar
  10. 9.
    R. A. Binkley, P. C. Hariharan, R. Seeger, R. A. Whiteside, and J. A. Pople, Gaussian 76, QCPE No. 368, Bloomington, Indiana (1968).Google Scholar
  11. 10.
    S. Suhai, J. Chem. Phys.73, 3843 (1980).Google Scholar
  12. 11.
    S. Suhai, P. S. Bagus, and J. Ladik, Chem. Phys. Lett.68, 467 (1982).Google Scholar
  13. 12.
    K. J. Less and E. G. Wilson, J. Phys. C.6, 3110 (1973).Google Scholar
  14. 13.
    T. Koopmans’, Physica1, 104 (1933).Google Scholar
  15. 14.
    W. L. Mccubbin, Chem. Phys. Lett.8, 507 (1971)Google Scholar
  16. J.-M. Andre and J. Delhalle, Chem. Phys. Lett.17, 145 (1972)Google Scholar
  17. J. Delhalle, S. Delhalle, and J.-M. André, Bull. Soc. Chim. Belq.83, 107 (1974)Google Scholar
  18. J. Delhalle, J. Chem. Phys.5, 306 (1974).Google Scholar
  19. 15.
    K. Morokuma, J. Chem. Phys.54, 962 (1971).Google Scholar
  20. 16.
    P. Otto, J. Ladik, and W. Forner, Chem. Phys.95, 365 (1985).Google Scholar
  21. 17.
    J. Delhalle, in: Electronic Structure of Polymers and Molecular Crystals ( J.-M. André and J. Ladik, eds.), p. 53, Penum Press, London—New York (1975).Google Scholar
  22. 18.
    H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Heeger, and A. J. Heeger, J. Chem. Soc., Chem. Commun. 578 (1977).Google Scholar
  23. 19.
    C. K. Chiang, M. A. Drug, S. C. Gau, A. J. Heeger, H. Shirakawa, E. J. Louis, A. G. Macdiarmid, and Y. W. Park, J. Am. Chem. Soc.100, 1013 (1978).Google Scholar
  24. 20.
    C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. Macdiarmid, Phys. Rev. Lett.39, 1098 (1977).Google Scholar
  25. 21.
    Y. W. Park, M. A. Drug, C. K. Chiang, A. J. Heeger, A. G. Macdiarmid, H. Shirakawa, and S. Ikeda, J. Polym. Sci., Polym. Chem. Ed.17, 195 (1979).Google Scholar
  26. 22.
    C. K. Chiang, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, and A. G. MacDiarmid, J. Chem. Phys.69, 5098 (1978).Google Scholar
  27. 23.
    C. K. Chaing, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G. Macdiarmid, and A. J. Heeger, Appl. Phys. Lett.33, 181 (1978).Google Scholar
  28. 24.
    C. R. Fincher, Jr., D. L. Peebles, A. J. Heeger, M. A. Drug, Y. Matsumara, and A. G. Dacdiarmid, Solid State Commun. 27, 489 (1978).Google Scholar
  29. 25.
    C. R. Fincher, Jr., M. Ozaki, A. J. Heeger, and A. C. Macdiarmid, Phys. Rev. B19, 4140 (1979).Google Scholar
  30. 26.
    Y. W. Park, A. Denenstein, C. K. Chiang, A. J. Heeger, and A. G. Macdiarmid, Solid State Commun. 29, 747 (1979).Google Scholar
  31. 27.
    L. G. S. Brooker, J. Am. Chem. Soc.73, 1087, 5332 (1951).Google Scholar
  32. 28.
    H. Kuhn, Helv. Chim. Acta31, 1441 (1948).Google Scholar
  33. 29.
    R. H. Baughman, S. L. Hsu, G. P. Pez, and A. J. Signorelli, J. Chem. Phys.68, 5405 (1978)Google Scholar
  34. A. J. Heeger, Comments Solid State Phys. 10, 53 (1981)Google Scholar
  35. G. Wegner, Angew. Chem.93, 352 (1981)Google Scholar
  36. C. R. Fincher, Jr., C.-E. Chen, A. J. Heeger, W. G. Macdiarmid, and J. B. Hastings, Phys. Rev. Lett.48, 100 (1982).Google Scholar
  37. 30.
    T. Ito, H. Shirakawa, and S. Ikeda, J. Polym. Sci., Polym. Chem. Ed.13, 1943 (1975).Google Scholar
  38. 31.
    J. E. Lennard-Jones, Proc. R. Soc. London, Ser. A158, 280 (1937).Google Scholar
  39. 32.
    C. A. Coulson, Proc. R. Soc. London, Ser. A164, 383 (1938); 169, 413 (1939).Google Scholar
  40. 33.
    H. Labhart, J. Chem. Phys.27, 957 (1957).Google Scholar
  41. 34.
    H. C. Longuet-Higgins and L. Salem, Proc. R. Soc. London, Ser. A251, 172 (1959).Google Scholar
  42. 35.
    J. A. Pople and S. H. Walmsley, Trans. Faraday Soc.58, 441 (1962).Google Scholar
  43. 36.
    M. J. S. Dewar and G. J. Gleicher, J. Am. Chem. Soc.87, 692 (1965).Google Scholar
  44. 37.
    R. Hoffman, Tetrahedron22, 521 (1966).Google Scholar
  45. 38.
    W. Kutzelnigg, Theor. Chim. Acta (Berlin)4, 417 (1966).Google Scholar
  46. 39.
    J.-M. André and G. Leroy, Theor. Chem. Acta (Berlin)9, 123 (1967).Google Scholar
  47. 40.
    S. F. O’shea and D. P. Santry, J. Chem. Phys.54, 2667 (1971).Google Scholar
  48. 41.
    D. L. Beveridge, I. Jano, and J. Ladik, J. Chem. Phys.56, 4744 (1972).Google Scholar
  49. 42.
    J.-M. André and G. Leroy, Int. J. Quantum Chem.5, 557 (1971).Google Scholar
  50. 43.
    M. Kertész, J. Koller, and A. Aéman, J. Chem. Phys.67, 1180 (1977).Google Scholar
  51. 44.
    M. Kertész, J. Koller, and A. Aman, J. Chem. Soc., Chem. Commun. 575 (1978).Google Scholar
  52. 45.
    A. Karpfen and J. Petkov, Theor. Chim. Acta (Berlin)53, 65 (1979).Google Scholar
  53. 46.
    P. Grant and I. P. Batra, Solid State Commun. 29, 225 (1979).Google Scholar
  54. 47.
    R. A. Harris and L. M. Falicov, J. Chem. Phys.51, 5034 (1969).Google Scholar
  55. 48.
    A. A. Ovchinnikov, I. I. Ükrainski, and G. V. Kventsel, Usp. Fiz. Nauk108, 81 (1973); Soy. Phys. Usp.15, 575 (1979).Google Scholar
  56. 49.
    S. Suhai, Phys. Rev. B27, 3506 (1983).Google Scholar
  57. 50.
    S. Suhai, J. Chem. Phys.73, 3843 (1980).Google Scholar
  58. 51.
    S. Suhai, Chem. Phys. Lett.96, 619 (1983).Google Scholar
  59. 52.
    J. Cizek and J. Paldus, J. Chem. Phys.47, 3976 (1967)Google Scholar
  60. J. Padus and J. Cizek, Phys. Rev. A3, 2268 (1970).Google Scholar
  61. 53.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys.51, 2657 (1969)Google Scholar
  62. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys.54, 726 (1971).Google Scholar
  63. 54.
    J. S. Binkley, R. A. Whiteside, P. C. Hariharan, R. Seeger, J. A. Pople, W. J. Hehre, and M. D. Newton, Gaussian 76, QCPE No. 368, Bloomington, Indiana (1968).Google Scholar
  64. 55.
    R. H. Baughman, S. I. Hsu, L. R. Anderson, G. P. Pez, and A. J. Signoreli, in: Molecular Metals ( W. Hatfield, ed.), p. 189, Plenum Press, New York-London (1979).Google Scholar
  65. 56.
    C. R. Fincher, Jr., C.-E. Chen, A. J. Heeger, A. G. Macdiarmid, and J. B. Hastings, Phys. Rev. Lett.48, 100 (1982).Google Scholar
  66. 57.
    H. P. Geserich and L. Pintschovius, Adv. Solid State Phys.16, 65 (1976).Google Scholar
  67. 58.
    H. Kamimura, A. J. Grant, F. Levy, A. D. Yoffe, and G. D. Pitt, Solid State Commun. 17, 49 (1976)Google Scholar
  68. D. E. Parry and J. M. Thomas, J. Phys. C8, L45 (1975)Google Scholar
  69. V. T. Rajan and L. M. Falicov, Phys. Rev. B12, 1240 (1975)Google Scholar
  70. A. Zunger, Chem. Phys.63, 4854 (1975)Google Scholar
  71. C. Merkel and J. Ladik, Phys. Lett.56A, 395 (1976);Google Scholar
  72. S. Suhai and M. Kertész, J. Phys. C9, L347 (1976)Google Scholar
  73. W. E. Rudge and P. M. Grant, Phys. Rev. Leu.35, 1799 (1975).Google Scholar
  74. 59.
    S. Suhai and J. Ladik, Solid State Commun, 22, 227 (1977).Google Scholar
  75. 60.
    B. Roos and P. Siegbahn, Theor. Chim. Acta (Berlin)17, 209 (1970).Google Scholar
  76. 61.
    M. Boudeulle and P. Michelle, Acta Crystallogr., Sect. A28, S199 (1972).Google Scholar
  77. 62.
    C. M. Mikulski, P. J. Russo, M. S. Saran, A. G. Macdiarmid, A. F. Garito, and A. J. Heeger, J. Am. Chem. Soc.97, 6358 (1975).Google Scholar
  78. 63.
    W. E. Rudge and P. M. Grant, Phys. Rev. Lett.35, 1799 (1975).Google Scholar
  79. 64.
    P. M. Grant, R. L. Greene, and G. B. Street, Phys. Rev. Lett.35, 1740 (1975).Google Scholar
  80. 65.
    R. L. Greene, P. M. Grant, and G. B. Street, Phys. Rev. Lett.34, 89 (1975).Google Scholar
  81. 66.
    M. Kertész, J. Koller, A. Azman, and S. Suhai, Phys. Lett.55A, 107 (1975).Google Scholar
  82. 67.
    R. S. Mulliken, J. Chem. Phys.23, 1833, 1841 (1955).Google Scholar
  83. 68.
    P. Mengel, P. M. Grant, W. E. Rudge, and B. H. Schechtman, Phys. Rev. Lett.35, 1803 (1975).Google Scholar
  84. 69.
    L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. G. Garito, and A. J. Heeger, Solid State Commun. 12, 1125 (1973).Google Scholar
  85. 70.
    See the following review papers: I. F. Schegolev, Phys. Status Solidi 12, 9 (1972)Google Scholar
  86. H. R. Zeller, Adv. Solid State Phys.13, 31 (1973)Google Scholar
  87. Z. G. Soos, Ann. Rev. Phys. Chem.25, 12 (1974)Google Scholar
  88. A. J. Heeger and A. F. Garito, in: Low-dimensional Cooperative Phenomena ( H. J. Keller, ed.), p. 89, Plenum Press, New York-London (1975)Google Scholar
  89. G. A. Thomas, D. E. Schafer, F. Wudl, P. M. Horn, D. Rimai, J. W. Cook, D. A. Glocker, M. J. Skove, C. W. Chu, R. P. Groff, J. L. Gillson, R. C. Wheland, L. R. Melby, M. B. Salamon, R. A. Craven, G. De Pasquali, A. N. Bloch, D. O. Cowan, V. V. Walatka, R. E. Pyle, R. Gemmer, T. O. Poehler, G. R. Johnson, M. G. Miles, J. D. Wilson, J. P. Ferraris, T. F. Finnegan, R. J. Warmack, V. F. Raaen and D. Jerome, Phys. Rev. B11, 5105 (1976)Google Scholar
  90. M. J. Cohen, L. B. Coleman, A. F. Garito, and A. J. Heeger, Phys. Rev. B13, 5111 (1976).Google Scholar
  91. 71.
    S. Suhai and J. Ladik, Phys. Lett.77A, 25 (1980).Google Scholar
  92. 72.
    T. J. Kistenmacher, T. E. Phillips, and D. O. Cowan, Acta Crystallogr. 33, 76 (1974).Google Scholar
  93. 73.
    W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys.18, 932 (1965).Google Scholar
  94. 74.
    A. Karpfen, J. Ladik, G. Stollhoff, and P. Fulde, Chem. Phys.8, 215 (1975)Google Scholar
  95. J. Ladik, Int. J. Quantum Chem.S9, 1563 (1975)Google Scholar
  96. R. D. Singh and J. Ladik, Phys. Lett.65A, 264 (1975).Google Scholar
  97. 75.
    F. Cavallone and E. Clementi, J. Chem. Phys.63, 4304 (1975).Google Scholar
  98. 76.
    J. André, Lecture at the Cecam Symposium on Quantum Theory of Polymers, Namur (1979).Google Scholar
  99. 77.
    F. Donoyer, R. Comes, A. F. Garito, and A. J. Heeger, Phys. Rev. Lett.35, 445 (1975).Google Scholar
  100. 78.
    J. Ladik and S. Suhai, Int. J. Quantum Chem., Quantum Biol. Symp.7, 181 (1980).Google Scholar
  101. 79.
    P. Otto, E. Clementi, and J. Ladik, J. Chem. Phys.78, 454 (1980).Google Scholar
  102. 80.
    E. Clementi and G. Corongiu, Int. J. Quantum Chem. Quantum Biol. Symp. 9, 213 (1982). See also IBM Research Report POK-09, March 3, 1982.Google Scholar
  103. 81.
    P. Otto and E. Clementi (unpublished results).Google Scholar
  104. 82.
    See, for example, C. Castiglioni, D. Ortolera, and E. Clementi, Comput. Phys. Commun. 19, 337 (1980).Google Scholar
  105. 83.
    J. Ladkik and S. Suhai, in: Theoretical Chemistry (C. Thomson, ed.), Vol. 4, p. 49, `Specialists’ Report, Royal Society of Chemistry, London (1981).Google Scholar
  106. 84.
    R. Fieldman, in: Atlas of Macromolecular Structure on Microfiche (AMSOM), Document 13.2.1.1. 1, National Institutes of Health, Bethesda, Washington (1976).Google Scholar
  107. 85.
    An adapted version of the program REFINE originally written by J. Hermans, D. R. Ferro, J. E. Mcqueen, and S. C. Wang, in: Environmental Effects on Molecular Structure and Properties (B. Pullman, ed.), p. 459, Reidel, Dordrecht (1976), has been used.Google Scholar
  108. 86.
    E. Cementi, J.-M. André, C. André, C. Klint, and D. Hahn, Acta Phys. Acad. Sci. Hung.27, 493 (1969).Google Scholar
  109. 87.
    G. Corongiu and E. Clementi, Gazz. Chim. Ital.108, 273 (1978).Google Scholar
  110. 88.
    E. Clementi, in: Lecture Notes in Chemistry, Vol. 19, Springer-Verlag, New York (1980).Google Scholar
  111. 89.
    E. Clementi and G. Corongiu, Biopolymers20, 2427 (1981); 21, 763 (1982).Google Scholar
  112. 90.
    E. Clementi, G. Corongiu, M. Gratarola, P. Habitz, C. Lupo, P. Otto, and D. Vercauteren, Int. J. Quantum Chem., Symp. 16, 409 (1982). See also IBM Research Report POK-03, September 23, 1982. Google Scholar
  113. 91.
    J. Ladik, Int. J. Quantum Chem.4, 307 (1971).Google Scholar
  114. 92.
    J. Ladik in: Advances in Quantum Chemistry (P.-O. Löwdin, ed.), Vol. 7, p. 377, Academic Press, New York (1973).Google Scholar
  115. 93.
    J. Ladik, Int. J. Quantum Chem., Quantum Biol. Symp.1, 651 (1974).Google Scholar
  116. 94.
    S. Roth and K. Dransfeld (personal communication).Google Scholar
  117. 95.
    T. A. Hoffman and J. Ladik, Adv. Chem. Phys.7, 184 (1964)Google Scholar
  118. R. Rein and J. Ladik, J. Chem. Phys.40, 2466 (1964).Google Scholar
  119. 96.
    E. Clementi, J. Mehl, and W. Von Niessen, J. Chem. Phys.54, 508 (1971).Google Scholar
  120. 97.
    J. Ladik, S. Suhai, P. Otto, and T. C. Collins, Int. J. Quantum Chem., Quantum Biol. Symp.4, 55 (1977)Google Scholar
  121. J. J. Ladik and S. Suhai, in: Molecular Interactions ( H. Ratajczak and W. J. Orville-Thomas, eds.), p. 151, Wiley, New York (1980).Google Scholar
  122. 98.
    S. Suhai, Int. J. Quantum Chem., Quantum Biol. Symp.11(in press).Google Scholar
  123. 99.
    P. Otto, A. K. Bakhshi, M. Seel, and J. Ladik (unpublished).Google Scholar
  124. 100.
    E. Clementi (unpublished results).Google Scholar
  125. 101.
    L. Pauling and R. B. Corey, Proc. Natl. Acad. Sci. U.S.A.39, 253 (1953).Google Scholar
  126. 102.
    S. Suhai and J. Ladik, Theor. Chim. Acta (Berl.)28, 67 (1974)Google Scholar
  127. S. Suhai, Theor. Chim. Acta (Berl.)34, 157 (1974)Google Scholar
  128. S. Suhai and J. Ladik, Acta Chim. Hung. Acad. Sci.82, 67 (1974).Google Scholar
  129. 103.
    A. Szent-Gyorgyi, Int. J. Quantum Chem., Quantum Biol. Symp.3, 45 (1976)Google Scholar
  130. A. Szent-Gyorgyi, Bioenergetics4, 535 (1973)Google Scholar
  131. A. Szent-Gyorgyi, Electronic Biology and Cancer, Marcel Dekker, New York (1976).Google Scholar
  132. 104.
    P. Otto, S. Suhai and J. Ladik, Int. J. Quantum Chem., Quantum Biol. Symp.4, 451 (1977).Google Scholar
  133. 105.
    P. Otto, E. Clementi, J. Ladik, and F. Martino, J. Chem. Phys.80, 5294 (1984).Google Scholar
  134. 106.
    A. Szent-Gyorgyi, Nature148, 157 (1941); Science 93, 609 (1941).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • János J. Ladik
    • 1
  1. 1.University of Erlangen-NurembergErlangen-WaterlooFederal Republic of Germany

Personalised recommendations