The Possible Role of Solid-State Physical Properties of Biopolymers in Their Biological Functions

  • János J. Ladik


Watson and Crick(1) have assumed that a point mutation (a single nucleotide-base substitution in the sequence of the bases in a DNA strand) occurs, if one of the nucleotide bases undergoes a tautomeric rearrangement via the intramolecular shifts of two protons in their hydrogen bonds (see Figure 11.1). The unusual tautomeric form of nucleotide bases (denoted by a star) is shown in Figure 11.2. If one writes the unusual and usual tautomeric forms of these bases side by side, one can easily see by inspecting the possibilities of hydrogen-bond formation that the normal A-T, G-C base pairing relations are replaced by the new relation
$$A*-C, A-C*, G*-T, G-T*$$
Hence if, for instance, one has an A* instead of an A in one of the strands of a double helix at the instant of its replication, after a single duplication one obtains C instead of T in the complementary helix (see Figure 11.3) causing a point mutation.


Solitary Wave Long Terminal Repeat Double Helix Nucleotide Base Particle Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. H. Watson and F. H. C. Crick, Nature171, 737 (1953)CrossRefGoogle Scholar
  2. F. H. C. Crick and J. D. H. Watson, Proc. R. Soc. London, Ser. A223, 171, 738 (1953).Google Scholar
  3. 2.
    P.-O. Lowdin, Rev. Mod. Phys. 35, 724 (1963); Biopolymers Symp.1, 161(1964); Adv. Quantum Chem.2, 213 (1965).Google Scholar
  4. 3.
    P.-O. Lowdin and J. Ladik (unpublished results).Google Scholar
  5. 4.
    J. Ladik, Preprint QB8, Quantum Chemistry Group, Uppsala University (1964)Google Scholar
  6. R. Rein and F. E. Harris, J. Chem. Phys. 41, 3393 (1964); J. Chem. Phys. 42, 2177 (1965); J. Chem. Phys.43, 4415 (1965)Google Scholar
  7. G. Biczó, J. Ladik, and J. Gergely, Acta Phys. Acad. Sci. Hung.20, 11 (1966)CrossRefGoogle Scholar
  8. S. Lunell and G. Sperber, J. Chem. Phys.46, 2119 (1967).CrossRefGoogle Scholar
  9. 5.
    R. Rein and J. Ladik, J. Chem. Phys.40, 2466 (1964).CrossRefGoogle Scholar
  10. 6.
    J. Ladik, J. Theor. Biol.6, 201 (1964).CrossRefGoogle Scholar
  11. 7.
    E. Santos, S. R. Tronick, S. A. Aaronson, S. Pulciani, and M. Barbacid, Nature298, 343 (1982)CrossRefGoogle Scholar
  12. C. J. Tabin, S. M. Bradley, C. T. Bargmann, R. H. Weinberg, A. G. Papageorge, E. M. Scolnick, R. D. Dhar, D. R. Lowy, and E. H. Chang, Nature300, 143 (1982).CrossRefGoogle Scholar
  13. 8.
    J. Ladik and J. Cicek, Int. J. Quantum Chem., Quantum Biol. Symp.26, 955 (1984).Google Scholar
  14. 9.
    See, for instance, H. P. Yockey, in: Symposium on Information Theory in Biology (H. P. Yockey, ed.), pp. 50 and 297, Pergamon Press, London—Paris—New York—Los Angeles (1958).Google Scholar
  15. 10.
    W. Forbes (personal communication).Google Scholar
  16. 11.
    M. R. Pincus, J. Van Ranswoude, J. B. Harford, E. H. Chang, and R. D. Klausner, Proc. Natl. Acad. Sci. U.S.A.180, 5253 (1983).CrossRefGoogle Scholar
  17. 12.
    Y. Yuasa, S. K. Srivasta, C. Y. Dunn, J. S. Thim, P. Reddy, and S. A. Aaronson, Nature303, 775 (1983).CrossRefGoogle Scholar
  18. 13.
    See, for instance, E. H. Chang, M. E. Furth, E. M. Scolnick, and P. R. Lowy, Nature 294, 479 (1982).Google Scholar
  19. 14.
    See, for instance, E. Rechavi, D. Givor, and E. Canaani, Nature 300, 607 (1982).Google Scholar
  20. 15.
    I. B. Weinstein (personal communication).Google Scholar
  21. 16.
    J. Ladik, S. Suhai, and M. Seel, Int. J. Quantum Chem., Quantum Biol. Symp.5, 35 (1978).Google Scholar
  22. 17.
    F. A. Cotton, V. W. Day, E. E. Hazen, Jr., and S. Larsen, J. Am. Chem. Soc.95, 4834 (1973).CrossRefGoogle Scholar
  23. 18.
    R. S. Day, F. Martino, and J. Ladik, J. Theor. Biol.84, 651 (1980).CrossRefGoogle Scholar
  24. 19.
    A. K. Bakhshi, J. Ladik, M. Seel, and P. Otto, Chem. Phys.108, 233 (1986).CrossRefGoogle Scholar
  25. 20.
    K. Laki and J. Ladik, Int. J. Quantum Chem., Quantum Biol. Symp.3, 51 (1976).Google Scholar
  26. 21.
    J. N. Murrell, M. Randic, and O. R. Williams, Proc. R. Soc. London, Ser. A284, 566 (1965).CrossRefGoogle Scholar
  27. 22.
    I. B. Weinstein (personal communication).Google Scholar
  28. 23.
    See, for instance, A. S. Davydov and N. F. Kisluha, Phys. Status Solidi 59, 463 (1973)Google Scholar
  29. A. S. Davydov, Phys. Scr.20, 387 (1979).CrossRefGoogle Scholar
  30. 24.
    W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B4, 2099 (1980).CrossRefGoogle Scholar
  31. 25.
    J. A. Krumhansl and D. M. Alexander, in: Structure and Dynamics: Nucleic Acids and Proteins (E. Clementi and R. H. Sarma, eds.), p. 61, Academic Press, New York (1983).Google Scholar
  32. 26.
    W. P. Su and A. J. Heeger, Proc. Nail. Acad. Sci. U.S.A.77, 5626 (1980).CrossRefGoogle Scholar
  33. 27.
    W. P. Su, in: Proc. Int. Conf. on Low-Dimensional Conductors, Boulder, Colorado [Mol. Cryst. Liq. Cryst.83,114 (1982)].Google Scholar
  34. 28.
    W. Förner, C. L. Wang, F. Martino, and J. Ladik, Phys. REv. B (submitted).Google Scholar
  35. 29.
    D. Hoffmann, W. Förner, and J. Ladik, Phys. Rev. B (submitted).Google Scholar
  36. 30.
    N. Swansson and C. I. Powell, J. Chem. Phys.39, 630 (1963).CrossRefGoogle Scholar
  37. 31.
    J. Jäger and J. Ladik, Phys. Lett.281, 328 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • János J. Ladik
    • 1
  1. 1.University of Erlangen-NurembergErlangen-WaterlooFederal Republic of Germany

Personalised recommendations