Skip to main content

Magnetic, Electric, and Mechanical Properties of Polymers

  • Chapter
Quantum Theory of Polymers as Solids
  • 107 Accesses

Abstract

If we neglect interaction of the electronic and/or nuclear spins with an external magnetic field (which can be treated correctly only within the framework of a relativistic CO theory; see Section 1.5), the one-electron Hamiltonian of a system in the presence of a magnetic field H can be written in the form

$$\overset{x}{\mathop{H}}\,=\frac{\overset{\wedge }{\mathop{p}}\,}{2m}+V(r)$$
(10.1)

where

$$\overset{\wedge }{\mathop{p}}\,=\overset{\wedge }{\mathop{p}}\,-\frac{e}{c}A;\,H(r)=curlA(r)$$
(10.2)

In the Hartree-Fock case one can then write

$$\overset{\wedge }{\mathop{F}}\,=\overset{x}{\mathop{{{H}^{N}}}}\,+\sum\limits_{j}{(2\overset{\wedge }{\mathop{{{J}_{j}}}}\,-\overset{\wedge }{\mathop{{{K}_{j}}}}\,)}$$
(10.3)

with

$$\overset{x}{\mathop{{{H}^{N}}}}\,=\frac{1}{2m}{{(\overset{\wedge }{\mathop{p}}\,-\frac{e}{c}A)}^{2}}-\sum\limits_{{{q}_{1}}=-N}^{N}{\sum\limits_{\alpha =1}^{M}{\frac{{{Z}_{\alpha }}}{|r-R_{\alpha }^{{{q}_{1}}}|}}=\frac{\overset{\wedge }{\mathop{p}}\,}{2m}+EN}$$
(10.4)

for a linear chain of 2N + 1 unit cells and M atoms in the cell, where the abbreviation EN denotes all the electron—nuclear interaction terms in the chain. In equation (10.3) summation over j indicates, as before, summation over all filled bands and integration in k-space over the first Brillouin zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Del Re and J. Ladik, Chem. Phys. 49, 32 (1980).

    Google Scholar 

  2. M. Seel, G. Del Re, and J. Ladik, J. Comput. Chem. 3, 451 (1982).

    Article  CAS  Google Scholar 

  3. M. Seel, Int. J. Quantum Chem. 26, 753 (1984).

    Article  CAS  Google Scholar 

  4. P.-O. Lowdin and P. K. Mukherjee, Chem. Phys. Lett. 14, 1 (1972).

    Article  CAS  Google Scholar 

  5. P. W. Langhoff, S. T. Epstein, and M. Karplus, Rev. Mod. Phys. 44, 602 (1962).

    Article  Google Scholar 

  6. A. Dalgarno and G. Victor, Proc. R. Soc., Ser. A291, 285 (1966)

    Google Scholar 

  7. S. Sengupta and M. Mukherji, J. Chem. Phys. 47, 260 (1967)

    Article  CAS  Google Scholar 

  8. P. K. Mukherjee and R. K. Moitra, J. Phys. B11, 2813 (1978).

    Article  CAS  Google Scholar 

  9. For a relativistic generalization of the time-dependent coupled Hartree-Fock equations see: J. Ladik, J. Čižek, and P. K. Mukherjee, in: Relativistic Effects in Atoms, Molecules and Solids (G. L. Malli, ed.), p. 305, Plenum Press, New York-London (1983).

    Google Scholar 

  10. J. Ladik (unpublished results).

    Google Scholar 

  11. See, for instance: W. Jones and N. H. March, Theoretical Solid State Physics, Vol. I, pp. 393–398, Dover Publ. Inc., New York (1985).

    Google Scholar 

  12. G. Maret and K. Dransfeld, in: Strong and Ultrastrong Magnetic Fields and their Applications (F. Herbach, ed.), Topics in Applied Physics, Vol. 57, p. 143, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo (1985), and references cited therein.

    Google Scholar 

  13. P. L. Davies, Trans. Faraday Soc. 48, 789 (1952).

    Article  CAS  Google Scholar 

  14. K. C. Rustagi and J. Ducuing, Opt. Commun. 10, 258 (1974)

    Article  CAS  Google Scholar 

  15. H. F. Hameka, J. Chem. Phys. 67, 2935 (1977).

    Article  CAS  Google Scholar 

  16. J. Zyss, J. Chem. Phys. 71, 909 (1979).

    Article  CAS  Google Scholar 

  17. A. Chablo and A. Hinchlife, Chem. Phys. Lett. 72, 149 (1980).

    Article  CAS  Google Scholar 

  18. V. P. Bodart, J. Delhalle, J.-M. André, and J. Zyss, Can. J. Chem. 63, 1631 (1985).

    Article  CAS  Google Scholar 

  19. J. Delhalle, V. P. Bodart, M. Dory, J.-M. André, and J. Zyss, Int. J. Quantum Chem. S19, 313 (1986).

    Google Scholar 

  20. See, for instance: H. Rutishauser, Numer. Math. 5, 48 (1963).

    Article  Google Scholar 

  21. W. Romberg, Det. Kong. Norske Videnskabers Selskab. Forhandlinger 28, 7 (1955).

    Google Scholar 

  22. H. C. Allen and E. K. Phyler, J. Am. Chem. Soc. 80, 2673 (1958).

    Article  CAS  Google Scholar 

  23. C.-M. Liegener, F. Beleznay, And J. Ladik, Phys. Lett. (accepted).

    Google Scholar 

  24. R. W. Keyes, IBM J. Res. Dev. 5, 266 (1961).

    Article  CAS  Google Scholar 

  25. F. Beleznay, G. Biczo, and J. Ladik, Acta Phys. Hung. 18, 213 (1965).

    Article  CAS  Google Scholar 

  26. S. Suhai, J. Polym. Sci., Polym. Phys. Ed. 21, 134 (1983).

    Article  Google Scholar 

  27. O. Fleck, P. Otto, and J. Ladik, Solid State Comm. (accepted).

    Google Scholar 

  28. M. Vracko, C.-M. Liegener, and J. Ladik (to appear).

    Google Scholar 

  29. S. Suhai (unpublished results).

    Google Scholar 

  30. M. J. S. Dewar, Y. Yamaguchi, and S. Hulk, Chem. Phys. 43, 145 (1979).

    Article  CAS  Google Scholar 

  31. A. L. Brower, J. R. Sabin, B. Crist, and M. A. Ratner, Int. J. Quantum Chem. 18, 651 (1980).

    Article  CAS  Google Scholar 

  32. A. Karpfen, J. Chem. Phys. 75, 238 (1981).

    Article  CAS  Google Scholar 

  33. C. W. Bunn, Trans. Faraday Soc. 35, 482 (1939).

    Article  CAS  Google Scholar 

  34. I. Sakurada, U. Nukushina, and T. Iro, J. Polym. Sci. 57, 651 (1962).

    Article  CAS  Google Scholar 

  35. I. Sakurada, T. Ito, and K. Nakamae, J. Polym. Sci. C15, 75 (1966).

    Google Scholar 

  36. J. Clements, R. Jakeways, and I. M. Ward, Polymer19, 639 (1978).

    Article  CAS  Google Scholar 

  37. R. A. Feldkamp, G. Venkaterman, and J. S. King, in: Neutron Inelastic Scattering, IAEA, Vienna, Vol. 2, p. 159 (1968).

    Google Scholar 

  38. R. G. Schaufele and T. Schimanouchi, J. Chem. Phys. 42, 2605 (1967).

    Google Scholar 

  39. G. R. Strobl and E. Eckel, J. Polym. Sci., Polym. Phys. Ed. 14, 913 (1976).

    Article  CAS  Google Scholar 

  40. T. Schimanouchi, A. Asahina and E. Enomoto, J. Polym. Sci. 59, 99 (1962).

    Google Scholar 

  41. A. Odajima and T. Maeda, J. Polym. Sci. C15, 55 (1966).

    CAS  Google Scholar 

  42. G. Wobsner and S. Blasenberg, Kolloid-Z. Z. Polym. 241, 985 (1970).

    Article  Google Scholar 

  43. K. Tashiro, M. Kobayashi, and H. Tadokoro, Macromolecules11, 914 (1978).

    Article  CAS  Google Scholar 

  44. J. Barham and A. Koller, J. Polym. Sci., Polym. Lett. Ed. 17, 591 (1979).

    Article  CAS  Google Scholar 

  45. G. T. Davies, P. K. Eby, and J. P. Coulson, J. Appl. Phys. 41, 4366 (1970).

    Article  Google Scholar 

  46. Y. Kobayashi and A. Keller, Polymer11, 114 (1970).

    Article  CAS  Google Scholar 

  47. B. Crist, M. A. Ratner, A. L. Brower, and J. R. Sabin, J. Appl. Phys. 50, 6047 (1980).

    Article  Google Scholar 

  48. F. Schwarzl (personal communication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Ladik, J.J. (1988). Magnetic, Electric, and Mechanical Properties of Polymers. In: Quantum Theory of Polymers as Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5233-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5233-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5235-8

  • Online ISBN: 978-1-4684-5233-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics