Vibrational Spectra and Transport Properties of Polymers

  • János J. Ladik


The standard way of calculating the normal coordinates of a molecule is the well-known GF method of Wilson.(1) In this method one starts from the harmonic force constants of the molecule in order to obtain the different normal coordinates of vibrations and their corresponding energies. These force constants are the second derivatives of the molecular total energies with respect to the different internal coordinates at equilibrium geometry. Therefore, the force constants are obtained by computing the energy hypersurface; in the case of a larger molecule this task is rather time-consuming. Differentiation of the total energy is carried out by calculating the first derivative (gradient), usually analytically, according to the method developed by Pulay,(2) while the second derivative is obtained by numerical methods.(3) It should be noted that, is some cases, both differentiations have been performed analytically after fitting the calculated potential hypersurfaces to quadratic potential-energy functions with the help of least-square methods.(4)


Transport Property Force Constant Vibrational Spectrum Boltzmann Factor Harmonic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Wilson, Jr., J. C. Decines, and P. C. Cross, Molecular Vibrations, MacGraw-Hill Book Company, New York (1955).Google Scholar
  2. 2.
    P. Pulay, in: Applications of Electronic Structure Theory, Modern Theoretical Chemistry (H. F. Schaefer III, ed.), Vol. 4, p. 153, Plenum Press, New York (1977).Google Scholar
  3. 3.
    A. Peluso, M. Seel, and J. Ladik, Can. J. Chem. 63, 1553 (1985).Google Scholar
  4. 4.
    P. Bosi, G. Zerbi, and E. Clementi, J. Chem. Phys. 66, 3376 (1977).Google Scholar
  5. 5.
    M. Tasumi and T. Shimanouchi, J. Chem. Phys. 43, 1245 (1965)Google Scholar
  6. M. Tasumi and S. Krimm, J. Chem. Phys. 46, 755 (1967).Google Scholar
  7. 6.
    L. Piseri and G. Zerbi, J. Mol. Spectrosc. 26, 254 (1961).Google Scholar
  8. 7.
    See, for instance: C. Kittel, Quantum Theory of Solids, Wiley, New York-London (1963).Google Scholar
  9. 8.
    A. Peluso, M. Seel, and J. Ladik, Solid State Commun. 53, 893 (1985).Google Scholar
  10. 9.
    R. S. Day and F. Martino, Chem. Phys. Lett. 84, 86 (1981)Google Scholar
  11. J. Ladik, Int. J. Quantum Chem. 23, 1073 (1983).Google Scholar
  12. 10.
    G. Zannoni and G. Zerbi, Solid State Commun. 47, 213 (1983).Google Scholar
  13. 11.
    P. Dean, Rev. Mod. Phys. 44, 127 (1972).Google Scholar
  14. 12.
    J. Delhalle, personal communication.Google Scholar
  15. 13.
    J. H. Wilkinson, The Algebraic Eigenvalue Problem, p. 633, Clarendon Press, Oxford (1965).Google Scholar
  16. 14.
    J. Ziman, Electrons and Phonons, Clarendon Press, Oxford (1972)Google Scholar
  17. W. Jones and N. March, Theoretical Solid State Physics, Vol. 1, pp. 195, 210, 277, 281–285, Dover Publ. Inc., New York (1985).Google Scholar
  18. 15.
    P. E. van Camp, V. E. van Doren, and J. T. Devreese, Solid State Commun. 42, 1224 (1979).Google Scholar
  19. 16.
    M. J. S. Dewar, Y. Yamaguchi, and S. H. Such, Chem. Phys. 43, 145 (1979).Google Scholar
  20. 17.
    H. Teramae, T. Yamabe, and A. Imamura, J. Chem. Phys. 81, 3564 (1984).Google Scholar
  21. 18.
    C. E. Blom, Lecture Notes in Physics, No. 113, p. 233, Springer-Verlag, Berlin-Heidelberg-New York (1980).Google Scholar
  22. 19.
    J. Shirakawa and S. Ikeda, Polym. J. 2, 231 (1971)Google Scholar
  23. F. B. Schügerl and H. Kuzmany, J. Chem. Phys. 74, 953 (1981).Google Scholar
  24. 20.
    D. Wohrle, Tetrahedron Lett. 1969 (1971)Google Scholar
  25. D. Wohrle, Makromol. Chem. 175, 1751 (1974).Google Scholar
  26. 21.
    A. Karpfen, J. Chem. Phys. 75, 238 (1981).Google Scholar
  27. 22.
    S. Huzinaga, J. Chem. Phys. 42, 1293 (1965)Google Scholar
  28. S. Huzinaga, Approximate Atomic Functions I, University of Alberta, Alberta (1971).Google Scholar
  29. 23.
    H. Schachtschneider and R. G. Snyder, Spectrochim. Acta19, 117, 865 (1963)Google Scholar
  30. H. Schachtschneider and R. G. Snyder, ibid. 19, 865 (1963).Google Scholar
  31. 24.
    A. Beyer and A. Karpfen, Chem. Phys. 64, 343 (1982).Google Scholar
  32. 25.
    L. Piela and J. Delhalle, Int. J. Quantum Chem. 13, 605 (1978)Google Scholar
  33. J. Delhalle, J. Piela, J.-L. Brédas, and J.-M. André, Phys. Rev. B22, 6254 (1980).Google Scholar
  34. 26.
    A. Karpfen, Int. J. Quantum Chem. 19, 1207 (1981).Google Scholar
  35. 27.
    A. Imamura and H. Fujita, J. Chem. Phys. 61, 1115 (1974)Google Scholar
  36. I. I. Ukrainsky, Theor. Chim. Acta (Berlin) 38, 139 (1975)Google Scholar
  37. A. Blumen and C. Merkel, Phys. Status Solidi B83, 425 (1977).Google Scholar
  38. 28.
    L. A. Curtiss and J. A. Pople, J. Mol. Spectrosc. 61, 1 (1976).Google Scholar
  39. 29.
    H. Lischka, J. Am. Chem. Soc. 96, 4761 (1974).Google Scholar
  40. 30.
    A. Axmann, W. Bien, P. Barsch, F. Hoszfeld, and H. Stiller, Discuss. Faraday Soc. 7, 69 (1969)Google Scholar
  41. R. Turbino and G. Zerbi, J. Chem. Phys. 51, 4509 (1969)Google Scholar
  42. A. Anderson, B. H. Terris, and W. S. Tse, J. Raman Spectrosc. 10, 148 (1981).Google Scholar
  43. 31.
    A. Zunger, J. Chem. Phys. 63, 1713 (1975)Google Scholar
  44. A. Karpfen and P. Schuster, Chem. Phys. Lett. 44, 459 (1976).Google Scholar
  45. 32.
    J. S. Kittelberger and D. F. Hornig, J. Chem. Phys. 46, 3099 (1967).Google Scholar
  46. 33.
    A. Anderson, B. H. Terrie, and W. S. Tse, Chem. Phys. Lett. 70, 300 (1980).Google Scholar
  47. 34.
    W. Kusmierczuk and A. Witkowski, Chem. Phys. Lett. 81, 558 (1981).Google Scholar
  48. 35.
    D. Hodzi and S. Bratož, in: The Hydrogen Bond Recent; Developments in Theory and Experiments (P. Schuster, G. Zundel, and C. Sândorfy, eds.), Vol. 2, p. 565, North-Holland Publishing Company, Amsterdam (1976).Google Scholar
  49. 36.
    A. Karpfen and J. Petkov, Solid State Commun. 29, 251 (1979)Google Scholar
  50. A. Karpfen and J. Petkov, Theor. Chim. Acta (Berlin)53, 65 (1979).Google Scholar
  51. 37.
    T. Shimanouchi, Phys. Chem. 4, 233 (1970).Google Scholar
  52. 38.
    M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899, 4907 (1977)Google Scholar
  53. M. J. S. Dewar and W. Thiel, QCPE program number 353, Indiana University, Bloomington, IndianaGoogle Scholar
  54. M. J. S. Dewar, G. P. Ford, M. L. Mckee, H. S. Rzepa, W. Thiel, and Y. Yamagouchi, J. Mol. Struct. 43, 135 (1978).Google Scholar
  55. 39.
    S. Suhai, Chem. Phys. Lett. 96, 619 (1983).Google Scholar
  56. 40.
    G. Zannoni and G. Zerbi, J. Mol. Struct. 100, 505 (1983).Google Scholar
  57. 41.
    F. Inagaki, M. Tasumi, and T. Miyazawa, J. Mol. Spectrosc. 50, 286 (1974).Google Scholar
  58. 42.
    F. Törôk and P. Pulay, J. Mol. Struct. 32, 93 (1970); K. Kozmutza and P. Pulay, Theor. Chim. Acta (Berlin) 37, 67 (1979).Google Scholar
  59. 43.
    M. J. S. Dewar and S. Olivella, J. Am. Chem. Soc. 100, 5290 (1978).Google Scholar
  60. 44.
    M. Damjanovich and M. Vujicu, Phys. Rev. B28, 1997 (1983).Google Scholar
  61. 45.
    E. J. Mele and M. J. Rice, Phys. Rev. Lett. 45, 926 (1980).Google Scholar
  62. 46.
    G. Zannoni and G. Zerbi, Chem. Phys. Lett. 85, 50 (1982)Google Scholar
  63. G. Zannoni and G. Zerbi, J. Mol. Struct. 100, 485 (1983).Google Scholar
  64. 47.
    R. M. Gavin, Jr. and S. A. Rice, J. Chem. Phys. 55, 2675 (1971).Google Scholar
  65. 48.
    J. Shirakawa and S Ikeda, Polym. J. 2, 231 (1971).Google Scholar
  66. J. Shirakawa, T. Iro, and S. Ikeda, Polym. J. 4, 460 (1973).Google Scholar
  67. I. Harada, Y. Furukawa, M. Tasumi, H. Shirakawa, and S. Ikeda, J. Chem. Phys. 73, 474 (1980).Google Scholar
  68. 49.
    F. B. Schügerl and H. Kuzmany, J. Chem. Phys. 74, 953 (1981).Google Scholar
  69. 50.
    K. Lunde and L. Zechmeister, Acta Chim. Scand. 8, 1421 (1954).Google Scholar
  70. 51.
    C. R. Fincher, Jr., M. Ozaki, A. J. Heeger, and A. G. Macdiarmid, Phys. Rev. B19, 4140 (1979).Google Scholar
  71. 52.
    B. Horovitz, Phys. Rev. Lett. 47, 1491 (1981).Google Scholar
  72. 53.
    J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).Google Scholar
  73. 54.
    H. Brooks, Adv. Electron. 7, 85 (1955)Google Scholar
  74. W. P. Dunke, Phys. Rev. 101, 531 (1956)Google Scholar
  75. C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).Google Scholar
  76. 55.
    See, for instance: A. L. Fetter and J. D. Valecka, Quantum Theory of Many Particle Systems, McGraw-Hill Book Company, New York (1971).Google Scholar
  77. 56.
    See, for instance: L. I. Schiff, Quantum Mechanics, McGraw-Hill Book Company, New York (1959).Google Scholar
  78. 57.
    R. Peierls, in: Transport Phenomena ( G. Kirczenow and J. Marro, eds.), Springer-Verlag, Berlin-New York-Heidelberg (1974).Google Scholar
  79. 58.
    R. Kuso, J. Phys. Soc. Jpn. 12, 570 (1957).Google Scholar
  80. 59.
    A. H. Wilsox, The Theory of Metals, Cambridge University Press, Cambridge, England (1954).Google Scholar
  81. 60.
    A. C. Smith, J. E. Janek, and R. B. Adler, Electronic Conduction in Solids, McGraw-Hill Book Company, New York (1967).Google Scholar
  82. 61.
    S. Suhai, in: Quantum Theory of Polymers ( J.-M. André, J. Ladik, and J. Delhalle, eds.), p. 335, D. Reidel Publ. Co., Dordrecht-Boston (1978).Google Scholar
  83. 62.
    H. Jones and C. Zener, Proc. R. Soc. London, Ser. A144, 101 (1934).Google Scholar
  84. 63.
    F. Beleznay, G. Biczb, and J. Ladik, Acta Phys. Acad. Sci. Hung. 18, 213 (1965).Google Scholar
  85. 64.
    S. H. Glarum, J. Phys. Chem. Solids 24, 1577 (1963).Google Scholar
  86. 65.
    J. Ladik, G. Biczö, and G. Elek, J. Chem. Phys. 44, 483 (1966).Google Scholar
  87. 66.
    S. Suhai, Theor. Chim. Acta (Berlin) 34, 157 (1974).Google Scholar
  88. 67.
    S. Suhai and J. Ladik, unpublished results.Google Scholar
  89. 68.
    D. D. Eley and D. I. Spivey, Trans. Faraday Soc. 56, 1432 (1961).Google Scholar
  90. 69.
    R. G. Anderson and C. J. Fritsche, Proc. 2nd Natl. Meeting of the Soc. of Applied Spectroscopy, paper 111, San Diego (1963).Google Scholar
  91. 70.
    S. Suhai, Solid State Commun. 21, 117 (1977).Google Scholar
  92. 71.
    S. Suhai, unpublished results.Google Scholar
  93. 72.
    S. K. Khanna, A. A. Bright, A. F. Garito, and A. J. Heeger, Phys. Rev. B10, 2139 (1974).Google Scholar
  94. 73.
    R. G. Kepler, J. Cjem. Phys. 39, 3528 (1963).Google Scholar
  95. 74.
    C. Herring, Proc. Int. Conf. Semiconduct. Prague, p. 60 (1961).Google Scholar
  96. 75.
    G. D. Whitefield, Phys. Rev. 121, 720 (1961).Google Scholar
  97. 76.
    L. Friedman, Phys. Rev. 140, 1649 (1969).Google Scholar
  98. 77.
    G. Del Re, J. Ladik, and G. Biczó, Phys. Rev. 155, 997 (1967).Google Scholar
  99. 78.
    S. Suhai, J. Chem. Phys. 57, 5599 (1972).Google Scholar
  100. 79.
    See Ref. 14 of Chapter 7.Google Scholar
  101. 80.
    F. J. Blatt, Physics of Electronic Conduction in Solids, pp. 135 and 186, McGraw-Hill Book Company, New York (1968).Google Scholar
  102. 81.
    C. T. O. Konski, P. Moser, and M. Shirai, Biopolymers Symp. 1, 479 (1964).Google Scholar
  103. 82.
    S. Suhai, unpublished results.Google Scholar
  104. 83.
    A. K. Bakhshi, P. Otto, J. Ladik, and M. Seel, Chem. Phys. 108, 215 (1986).Google Scholar
  105. 84.
    A. K. Bakhshi, J. Ladik, M. Seel, and P. Otto, Chem. Phys. 108, 233 (1986).Google Scholar
  106. 85.
    See Refs. 78–80 of Chapter 2.Google Scholar
  107. 86.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford (1971)Google Scholar
  108. M. Grünewald, B. Pohlmann, B. Mohagvan, and D. Würtz, Philos. Mag. B49, 341 (1984)Google Scholar
  109. M. Grünewald, B. Mohagvan, B. Pohlmann, and D. Würtz, Phys. Rev. B32, 8191 (1985).Google Scholar
  110. 87.
    J. M. Ziman, Models of Disorder, Cambridge University Press, Cambridge, England (1979).Google Scholar
  111. 88.
    J. Ladik, M. Seel, P. Otto, and A. K. Bakhshi, Chem. Phys. 108, 203 (1986).Google Scholar
  112. 89.
    F. Parak, in: Structure and Motion: Membranes, Nucleic Acids and Proteins ( E. Clementi, G. Corongiu, M. H. Sarma, and R. H. Sarma, eds.), p. 243, Adenine Press, New York (1985).Google Scholar
  113. 90.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, p. 213, Clarendon Press, Oxford (1971).Google Scholar
  114. 91.
    M. Silver, G. Schoenherr, and G. Baessler, Phys. Rev. Lett. 48, 352 (1982).Google Scholar
  115. 92.
    H. Scher and M. Lax, Phys. Rev. B 7, 4491, 4502 (1973)Google Scholar
  116. T. Odagaki and M. Lax, Phys. Rev. B24, 5284 (1981)Google Scholar
  117. T. Odagaki and M. Lax, Phys. Rev. B26, 6480 (1982)Google Scholar
  118. T. Odagaki and M. Lax, Phys. Rev. Lett. 45, 847 (1980). For a review see: F. Martino, in: Quantum Chemistry of Polymers; Solid State Aspects (J. Ladik, J.-M. André, and M. Seel, eds.), p. 279, D. Reidel Publ. Co., Dordrecht—BostonLancaster (1984).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • János J. Ladik
    • 1
  1. 1.University of Erlangen-NurembergErlangen-WaterlooFederal Republic of Germany

Personalised recommendations