Electron Capture in Ion Atom and Ion-Ion Collisions

  • M. Barat
Part of the NATO ASI Series book series (NSSB, volume 145)


Electron capture (EC) by positive ions in collision with various targets has remained one of the most important subjects of research since the early 30’s. From a theoretical point of view, EC is obviously a coupled 3-body problem: at least two cores and an active electron that jumps between them. Practical interest in EC arose in a variety of fields. In aeronomy and astrophysics electron capture processes play a crucial role in the equilibrium of the various ionic and atomic species. More recently a renewed interest arose from the physics of thermonuclear fusion, where capture by highly charged ionic impurities were found to be an important process in tokamak devices. For that reasons, a number of reviews were devoted to this subject during the past years, including lectures given in various NATO advanced science institutes. The aim of this lecture is not at all to add a new review to this list, but (i) to sumarize the very basis of the present theoretical approaches at low and moderate collision energy, (ii) to pinpoint some crucial difficulties in the theoretical treatment, (iii) to select specific examples which, to the taste of the author, reflect some present practical interest, or some significant advances.


Electron Capture Active Electron Collision Velocity Final Channel Rotational Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g. K. Taulberg DUNG in Fundamental Processes in energetic atomic collisions. Nato ASI series V v. 103: 349).Google Scholar
  2. 1a.
    M. Kimura in invited lectures XIV ICPEAC (Palo Alto) (1985).Google Scholar
  3. 2.
    L.H. Thomas, Proc. Roy. Soc. A114: 561 (1927).Google Scholar
  4. 3.
    E. Horsdal Pedersen, C.L. Cocke and M. Stockli, Phys. Rev. Let. 50: 1910 (1983).CrossRefGoogle Scholar
  5. 4.
    N. Bohr and J. Lindhard, K. Dan, Vid. Sel. Mat. Phys. Medd 28, n. 7 (1954).Google Scholar
  6. 5.
    H. Knudsen, H.K. Haugen and P. Hvelplund, Phys. Rev. A23: 597 (1981).Google Scholar
  7. 6.
    P. Hvelplund et al., The Physics of highly ionized atoms (eds. Silver and Peacock, North Holland) 421 (1985).Google Scholar
  8. 7.
    C. Gaussorgues et al., J. Phys. B 8: 239 (1975).CrossRefGoogle Scholar
  9. 8.
    D.R. Bates and R. McCarroll, Proc. Roy. Soc. A245: 175 (1958).Google Scholar
  10. 9.
    W. Fritsch, J. Phys. B 15: L389 (1982).CrossRefGoogle Scholar
  11. 10.
    C.D. Lin, Phys. Rev. A17: 1646 (1978).Google Scholar
  12. 11.
    See e.g. M. Kimura, Phys. Rev. A31: 2153 (1985) and ref. there inclosed.Google Scholar
  13. 12.
    U. Wille and R. Hippler, Physics Report to be published (1986).Google Scholar
  14. 13.
    W. Fritsch and C.D. Lin, J. Phys. B 15: 1255 (1982).CrossRefGoogle Scholar
  15. 14.
    R.K. Janev, L.P. Prestniakov and V.P. Shevelko, Physics of highly charged ions, Springer-Verlag, Berlin (1985).Google Scholar
  16. 15.
    T.G. Winter and C.L. Lin, Phys. Rev. A29: 567 (1984).Google Scholar
  17. 16.
    F.T. Smith, Phys. Rev. 179: 111 (1969).CrossRefGoogle Scholar
  18. 17.
    J. von Neuman and E.P. Wigner, Phys. Z. 30: 457 (1927).Google Scholar
  19. 18.
    W.R. Thorson and J.B. Delos, Phys. Rev. A18: 135 (1978).Google Scholar
  20. 19.
    R.D. Piacentini and A. Salin, J. Phys. B 7: 1966 (1974);CrossRefGoogle Scholar
  21. 19a.
    R.D. Piacentini and A. Salin, J. Phys. B 9: 563 (1976);CrossRefGoogle Scholar
  22. 19b.
    R.D. Piacentini and A. Salin, J. Phys. B 10: 1515 (1977).CrossRefGoogle Scholar
  23. 20.
    S.B. Schneiderman and A. Russek, Phys. Rev. 181: 311 (1969).CrossRefGoogle Scholar
  24. 21.
    J. Vaaben and K. Taulberg, J. Phys. B 14: 1815 (1981).CrossRefGoogle Scholar
  25. 22.
    V.H. Ponce, J. Phys. B 12: 3731 (1979).CrossRefGoogle Scholar
  26. 23.
    L. Landau, Phys. Z. Sov. 246: 14 (1932).Google Scholar
  27. 24.
    Yu N. Demkov, Sov. Phys. JETP 18: 138 (1964).Google Scholar
  28. 25.
    S. Ohtani et al., J. Phys. B 15: L533 (1982).CrossRefGoogle Scholar
  29. 26.
    O.G. Larsen and K. Taulberg, J. Phys. B 17: 4523 (1984).CrossRefGoogle Scholar
  30. 27.
    A. Salin, J. de Physique 45: 671 (1984).CrossRefGoogle Scholar
  31. 28.
    D. Vernhet et al., Phys. Rev. A 32: 1256 (1985).CrossRefGoogle Scholar
  32. 28a.
    L.J. Lembo et al., Phys. Rev. Let 55: 1874 (1985).CrossRefGoogle Scholar
  33. 29.
    T.A. Green, E.J. Shipsey and J.C. Browne, Phys. Rev. A25: 1364 (1982);Google Scholar
  34. 29a.
    T.A. Green, E.J. Shipsey and J.C. Browne, Phys. Rev. A27: 821 (1983).Google Scholar
  35. 30.
    T.A. Green, Phys. Rev. A23: 519 (1981) and following papers.Google Scholar
  36. 31.
    W. Fritsch and C.D. Lin, Phys. Rev. A19: 3039 (1984).Google Scholar
  37. 32.
    M. Kimura and C.D. Lin, Phys. Rev. A31: 590 (1985).Google Scholar
  38. 33.
    M. Kimura and C.D. Lin, Phys. Rev. A32: 1357 (1985).Google Scholar
  39. 34.
    M. Gargaud, I. Hanssen, R. McCarroll and P. Valiron, J. Phys. B 14: 1359 (1981).CrossRefGoogle Scholar
  40. 35.
    E. Salzborn (see lecture in this volume).Google Scholar
  41. 36.
    P. Roncin et al., XIV ICPEAC (Palo Alto): 677 (1985).Google Scholar
  42. 37.
    A. Bordenave et al., J. Phys. B 17: L127 (1984).CrossRefGoogle Scholar
  43. 38.
    K. Rinn, Melchert and E. Salzborn, J. Phys. B, to be published.Google Scholar
  44. 39.
    A. Jognaux, F. Brouillard and S. Sziics, J. Phys. B 11: L669 (1978).CrossRefGoogle Scholar
  45. 40.
    D.R. Bates and A.M. Boyd, Proc. Phys. Soc. 80: 1301 (1962).CrossRefGoogle Scholar
  46. 41.
    R. Janev, D. Belic, J. Phys. B 15: 3479 (1982).CrossRefGoogle Scholar
  47. 42.
    R. Janev, Phys. Lett. 89A: 190 (1982).Google Scholar
  48. 43.
    M. Barat and V. Sidis, Ann. Phys. (Paris) 8: 133 (1983).Google Scholar
  49. 44.
    B. Peart, R. Grey and K.T. Dolder, J. Phys. B 9, 3047 (1976).CrossRefGoogle Scholar
  50. 45.
    J.T. Moseley, W. Aberth and J.R. Peterson, Phys. Rev. Let. 24: 435 (1970).CrossRefGoogle Scholar
  51. 46.
    V. Sidis, C. Kubach and D. Füssen, Phys. Rev. Lett. 47: 1280 (1981);CrossRefGoogle Scholar
  52. 46a.
    V. Sidis, C. Kubach and D. Füssen, Phys. Rev. A27: 2431 (1983).Google Scholar
  53. 47.
    S. Szücs, M. Karema, M. Terao and F. Brouillard, J. Phys. B17: 1613 (1984).Google Scholar
  54. 48.
    B. Peart, M.A. Bennett and K. Dolder: J. Phys. B 18: L439 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. Barat
    • 1
  1. 1.Laboratoire des Collisions Atomiques et MoléculairesUniversité Paris-SudOrsay CedexFrance

Personalised recommendations