Advertisement

Stochastic Quantization of Gauge Fields and Constrained Systems

  • Mikio Namiki
Part of the NATO ASI Series book series (NSSB, volume 144)

Abstract

The Parisi-Wu stochastic quantization method is applied to gauge fields and constrained systems. It is first shown, by means of perturbation expansion, that we can quantize non-Abelian Gauge fields without resort to introduction of the conventional gauge fixing term into the Lagrangian, and that the Faddeev-Popov ghost effects can automatically be produced without help of any ghost field. To develop non-perturbative approach to nonlinear fields, we next formulate the general theory of stochastic quantization of a dynamical system with regular Lagrangian under holonomic constraints. Applying it to the nonlinear sigma model, we obtain numerically internal energies and long-range correlation functions using an improved procedure of numerical simulation. Finally we discuss a possible scheme of self-regularized field theory and its renormalization within the framework of the modified stochastic quantization method.

Keywords

Langevin Equation Nonlinear Sigma Model Holonomic Constraint Stochastic Quantization Constraint Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Parisi and Wu Yongshi, Sci. Sin. 24:483 (1981).Google Scholar
  2. 2.
    W. Grimus and Hüffel, Z. Phys. C18:129 (1983),ADSGoogle Scholar
  3. 2a.
    H. Nakazato, M. Namiki, I. Ohba and K. Okano, Prog. Theor. Phys. 69; 298 (1983).MathSciNetADSCrossRefGoogle Scholar
  4. 3.
    M. Namiki, I. Ohba, K. Okano and Y. Yamanaka, Prog. Theor. Phys. 69:1580 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 4.
    H. Nakagoshi, M. Namiki, I. Ohba and K. Okano, Prog. Theor. Phys. 70:326 (1983).ADSCrossRefGoogle Scholar
  6. 4a.
    And see also D. Zwanziger, Nucl. Phys. B192:259 (1981).MathSciNetADSCrossRefGoogle Scholar
  7. 4b.
    L. Baulieu and D. Zwanziger, Nucl. Phys. B193:163 (1981).MathSciNetADSCrossRefGoogle Scholar
  8. 4c.
    E. Seiler, I. O. Stamatescu and D. Zwanziger, Nucl. Phys. B239:177 (1984).ADSCrossRefGoogle Scholar
  9. 5.
    T. Fukai, H. Nakazato, I. Ohba, K. Okano and Y. Yamanaka, Prog. Theor. Phys. 69:1600 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 6.
    M. Namiki, I Ohba and K. Okano, Prog. Theor. Phys. 72:350 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 7.
    M. Namiki, I Ohba, K. Okano, M. Rikihisa and S. Tanaka: Prog. Theor. Phys. 73:186 (1985).ADSCrossRefGoogle Scholar
  12. 8.
    N. Nakazato, M. Namiki and H. Shibata, Preprint WU-HEP-85–10 (1985)Google Scholar
  13. 9.
    M. Namiki and Y. Yamanaka, Hadronic Journal 7:594 (1984).MathSciNetGoogle Scholar
  14. 10.
    L. D. Faddeev, Teoret. i Mat. Fiz. 1:3 (1969).MathSciNetGoogle Scholar
  15. 10a.
    P. Senjanovic, Ann. of Phys. 100:227 (1976).ADSCrossRefGoogle Scholar
  16. 11.
    G. Parisi: Nucl. Phys. B180 [FS2]:378 (1981);ADSCrossRefGoogle Scholar
  17. 11a.
    G. Parisi: Nucl. Phys. B205 [FS5]:337 (1982).MathSciNetADSCrossRefGoogle Scholar
  18. 12.
    M. Namiki, I. Ohba, K. Okano, M. Rikihisa and S. Tanaka, Preprint WU-HEP-85–7 (1985).Google Scholar
  19. 13.
    J. D. Breit, S. Gupta and A. Zaks, Nucl. Phys. B233:61 (1984).ADSCrossRefGoogle Scholar
  20. 13a.
    J. Alfaro, Nucl. Phys. B253:464 (1985).MathSciNetADSCrossRefGoogle Scholar
  21. 14.
    M. Namiki and Y. Yamanaka, Prog. Theor. Phys. 69: 1764 (1983).MathSciNetADSCrossRefGoogle Scholar
  22. 14a.
    N. Saito and M. Namiki, Prog. Theor. Phys. 16:71 (1956).ADSMATHCrossRefGoogle Scholar
  23. 14b.
    M. Namiki, Bulletin of the International Statistical Institute 28: 475 (1961);Google Scholar
  24. 14c.
    M. Namiki, Memories of School of Sci. and Eng. Waseda Univ. 29:29 (1965).MathSciNetGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Mikio Namiki
    • 1
  1. 1.Department of PhysicsWaseda UniversityTokyoJapan

Personalised recommendations