Advertisement

On the Quantum Theory of Continuous Measurements

  • Alberto Barchielli
Part of the NATO ASI Series book series (NSSB, volume 144)

Abstract

In the usual formulation of quantum mechanics only instantaneous measurements are considered. However, continuous (in time) measurements are often met in practice; for instance, the track of a particle can be approximately followed, or the density of matter in a fluid can be continuously observed, or some characteristic of a system can be monitored by some electronic device. Due to the work of many authors1–4 a very flexible formulation of quantum mechanics has been developed, by which continuous measurements too can be consistently introduced.2,5–8 A central point in this formulation is the notion of instrument,2 which contains both the probabilities for the measured quantity and the way the state of the system changes under measurement.

Keywords

Continuous Measurement Gravitational Wave Poisson Type Quantum Nondemolition Quantum Stochastic Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ludwig, Foundations of Quantum Mechanics (Springer, Berlin, 1982).Google Scholar
  2. 2.
    E.B. Davies, Quantum Theory of Open Systems (Academic, London, 1976).MATHGoogle Scholar
  3. 3.
    K. Kraus, States, Effects, and Operations, Lecture Notes in Physics, Vol.190 (Springer, Berlin, 1983).Google Scholar
  4. 4.
    A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982).MATHGoogle Scholar
  5. 5.
    M.D. Srinivas, E.B. Davies, Opt.Acta 28, 981 (1981).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A. Barchielli, L. Lanz, G.M. Prosperi, Found. Phys. 13, 779 (1983).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Barchielli, L. Lanz, G.M. Prosperi, in “Chaotic Behavior in Quantum Systems”, ed. by G. Casati (Plenum, New York, 1985), p.321.Google Scholar
  8. 8.
    A. Barchielli, G. Lupieri, J. Math. Phys. 26, 2222 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    I.M. Gel’fand, N.Ya. Vilenkin, Generalized Functions, Vol.4, Applications of Harmonic Analysis (Academic, New York and London, 1964).Google Scholar
  10. 10.
    A. Barchielli, Stochastic processes and continual measurements in quantum mechanics, to appear in Proceedings of the Ascona-Como International Conference in “Stochastic Processes in Classical and Quantum Systems”, 24–29 June 1985, Ascona, Switzerland.Google Scholar
  11. 11.
    R.L. Hudson, K.R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    A. Barchielli, Nuovo Cimento 74B, 113 (1983).MathSciNetADSGoogle Scholar
  13. 13.
    A.S. Holevo, 57, 1238 (1984).CrossRefGoogle Scholar
  14. 14.
    A.S. Holevo, Quantum estimation, to appear in “Advances in Statistical Signal Processing” (JAI Press, 1986).Google Scholar
  15. 15.
    A. Barchielli, Phys. Rev. D 32, 347 (1985).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    A. Rimini, in Proceedings of the Theoretical Physics Meeting — Amalfi, 1983 (ESI, Napoli, 1984), p.275.Google Scholar
  17. 17.
    G.C. Ghirardi, A. Rimini, T. Weber, in “Quantum Probability and Applications II”, ed. by L. Accardi and W. von Waldenfels, Lecture Notes in Mathematics, Vol. 1136 (Springer, Berlin, 1985), p.223.CrossRefGoogle Scholar
  18. 18.
    A. Barchielli, L. Lanz, G.M. Prosperi, Nuovo Cimento 72B, 79 (1982).MathSciNetADSGoogle Scholar
  19. 19.
    L. Lanz, O. Melsheimer, S. Penati, A model for an objective description of macroscopic state variables in quantum mechanics (preprint IFUM 314/FT, Milano, Dec.1985).Google Scholar
  20. 20.
    L. Lanz, O. Melsheimer, E. Wacker, Physica 131A, 520 (1985).MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Alberto Barchielli
    • 1
  1. 1.Dipartimento di Fisica dell’Università di Milano, Istituto Nazionale di Fisica NucleareSezione di MilanoMilanoItaly

Personalised recommendations