Two Remarks on the Physical Content of Stochastic Mechanics

  • Simon Golin
Part of the NATO ASI Series book series (NSSB, volume 144)


Since the beginnings of quantum mechanics a partial formal similarity to statistical phenomena was noticed [Sch 2; Fü; Mo; Ja]. The theory of stochastic mechanics [Fé; Ne 1–3; Gue 1] is one of such attempts at describing quantum phenomena in terms of stochastic processes. Naturally, it has been an interesting question whether the results of stochastic mechanics are consistent with those obtained in the usual functional analytic approach to quantum mechanics.


Uncertainty Relation Quantum Correlation Stochastic Mechanic Mechanical Correlation Ordinary Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BGS]
    Ph.Blanchard, S.Golin and M.Serva: On Repeated Measurements in Stochastic Mechanics (in preparation)Google Scholar
  2. [Ci]
    M.Cini: Stochastic Field Theory, contribution to this workshopGoogle Scholar
  3. [Fé]
    I.Fényes: Eine wahrscheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik, Z.Physik 132, 81 (1952)MathSciNetADSMATHCrossRefGoogle Scholar
  4. [FMS] Falco, S.De Martino and S.De Siena: Position-Momentum Uncertainty in Stochastic Mechanics, Phys.Rev.Lett. 49,181(1982)Google Scholar
  5. [Fü]
    R.Fürth: Über einige Beziehungen zwischen klassischer Statistik und Quantenmechanik, Z.Physik 81, 143 (1933)ADSMATHCrossRefGoogle Scholar
  6. [GHT]
    H.Grabert, P.Hänggi und P.Talkner: Is Quantum Mechanics Equivalent to a Classical Process?, Phys.Rev. A19, 2440 (1979)ADSGoogle Scholar
  7. [Go 1]
    S.Golin: Uncertainty Relations in Stochastic Mechanics, J.Math.Phys. 26, 2781 (1985)MathSciNetADSMATHCrossRefGoogle Scholar
  8. [Go 2]
    -: Comment on Momentum in Stochastic Mechanics (submitted to J.Math.Phys.)Google Scholar
  9. [Go 3]
    -: Indeterminacy Relations in Stochastic Mechanics, in: Stochastic Processes in Classical and Quantum Systems (eds. S.Albeverio et al.), Lecture Notes in Mathematics, Springer (to appear)Google Scholar
  10. [Gue 1]
    F.Guerra: Structural Aspects of Stochastic Mechanics and Stochastic Field Theory,Phys.Rep. 77, 263 (1981)MathSciNetGoogle Scholar
  11. [Gue 2]
    -:Probability and Quantum Mechanics, The Conceptual Foundations of Stochastic Mechanics, in: Quantum Probability and Applications to the Quantum Theory of Irreversible Processes (eds. L. Accardi et al.),Lecture Notes in Mathematics 1055, Springer (1984)CrossRefGoogle Scholar
  12. [Gue 3]
    -:Stochastic Mechanics and Quantum Mechanics, contribution to this workshopGoogle Scholar
  13. [Ja]
    M. Jammer: The Philosophy of Quantum Mechanics,Wiley (1974)Google Scholar
  14. [Mo]
    J.E.Moyal: Quantum Mechanics as a Statistical Theory, Proc. Camb.Phil. Soc. 45, 99 (1949)MathSciNetADSMATHCrossRefGoogle Scholar
  15. [MS]
    S.De Martino and S.De Siena: Quantum Uncertainty Relations and Stochastic Mechanics,Nuovo Cimento 79B, 175 (1984)ADSGoogle Scholar
  16. [Ne 1]
    E.Nelson: Derivation of the Schrödinger Equation from Newtonian Mechanics, Phys.Rev. 150, 1079 (1966)ADSCrossRefGoogle Scholar
  17. [Ne 2]
    -:Dynamical Theories of Brownian Motion, Princeton University Press (1967)MATHGoogle Scholar
  18. [Ne 3]
    -:Quantum Fluctuations, Princeton University Press (1985)MATHGoogle Scholar
  19. [Ne 4]
    -:Field Theory and the Future of Stochastic Mechanics, in: cf. [Go 3]Google Scholar
  20. [PAC]
    L. de la Peña-Auerbach and M.Cetto: Stronger Form for the Position-Momentum Uncertainty Relation, Phys.Lett A39,65 (1972)ADSGoogle Scholar
  21. [Sch 1]
    E.Schrödinger: Zum Heisenbergschen Unschärfeprinzip, Sitzungs- ber. Preuss.Akad.Wiss.,Phys.-Math.Kl., 296 (1930)Google Scholar
  22. [Sch 2]
    -:Über die Umkehrung der Naturgesetze, Sitzungsber. Preuss.Akad. Wiss., Phys.-Math.Kl., 144 (1931)Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Simon Golin
    • 1
  1. 1.Department of Physics and Research Centre Bielefeld-Bochum-StochasticsUniversity of BielefeldBielefeld 1Germany

Personalised recommendations