Anomalies and Their Cancellation

  • P. Cotta-Ramusino
Part of the NATO ASI Series book series (NSSB, volume 144)


We describe briefly the mathematical structure of anomalies. A special consideration is given to chiral anomalies in gauge theories and some conclusions are drawn for field theories derived from superstrings.


Gauge Theory Consistency Condition Cohomology Group Local Coordinate System Principal Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.B. Green, J.H. Schwartz, Phys. Lett. 149 B:117 (1984).Google Scholar
  2. 2.
    L.C. Biedenharn in “Colloquium on Group Theoretical Methods in Physics” CNRS, Marseille (1972).Google Scholar
  3. 3.
    C. Becchi, A. Rouet, R. Stora, Ann. Physics 98: 287 (1976).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    L. Bonora, P. Cotta-Ramusino, Comm. Math. Phys. 87:589 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    L. Alvarez-Gaume, E. Witten, Nucl. Phys. B234: 269 (1983)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    M. Atiyah, I. Singer, Proc. Nat. Acad. Sci. USA, 81:2597 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  7. 7.
    R. Stora, in Progress in gauge field theory. G.’t Hooft et al. (eds), New York Plenum (1984).Google Scholar
  8. 8.
    W. Bardeen, B. Zumino, Nucl. Phys. B244: 421 (1984).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    O. Alvarez, B. Zumino, I. Singer, Comm. Math. Phys. 96:409 (1984).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    G. Moore, P. Nelson, Comm. Math. Phys. 100:83 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    W. Greub, S. Halperin, R. Vanstone, Connections, Curvature and Cohomology, vol. III, New York, Academic Press (1976).MATHGoogle Scholar
  12. 12.
    L. Bonora, P. Cotta-Ramusino, C. Reina, Physics Letters 126B:305Google Scholar
  13. 13.
    L. Bonora, P. Cotta-Ramusino, Physics Letters 107B:87.Google Scholar
  14. 14.
    J. Stasheff in Symposium on Anomalies, Geometry Topology, W. Bardeen, A. White (eds.), Singapore, World Scientific Pu.Co. (1985).Google Scholar
  15. 15.
    L. Bonora, P. Cotta-Ramusino, University of Padua preprint DFPD 29–85.Google Scholar
  16. 16.
    L. Bonora, P. Cotta-Ramusino, University of Padua preprint (1985) to be published in Physics Letters.Google Scholar
  17. 17.
    L. Bonora, P. Cotta-Ramusino, M. Rinaldi (in preparation).Google Scholar
  18. 18.
    G.F. Chapline, M.S. Manton, Physics Lett. 120B:105 (1983).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    P. Candelas, G. Horowitz, A. Strominger, E. Witten, Nucl. Phys. B258: 46 (1985).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Cotta-Ramusino
    • 1
  1. 1.Istituto Nazionale di Fisica NucleareDipartimento di Fisica dell’Università di MilanoSez. MilanoItaly

Personalised recommendations