Quantum Theory in Vector Bundles

Recent insights on the role of cohomology in quantum gauge theory
  • Meinhard E. Mayer
Part of the NATO ASI Series book series (NSSB, volume 144)


The purpose of this talk is to describe a framework capable of accommodating quantum gauge theory (QGT), based on recent insights on the cohomological interpretation of ghosts, BRS-transformations, anomalies, and Schwinger terms. The ultimate hope is that this approach will open a window towards a trial marriage of quantum field theory and gravity.


Gauge Theory Vector Bundle Gauge Transformation Principal Bundle Connection Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Contributions to this volume by: P. Cotta-Ramusino, B. Kay, M. Namiki, H. Narnhofer, G. Sewell, and others. BOOKS (Mathematics): R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag, New York, Heidelberg, Berlin, 1982MATHGoogle Scholar
  2. D. B. Fuks, Kogomologii beskonechnomernykh algebr Lie (Chomologies of Infinite-dimensional Lie Algebras), Nauka, Moscow, 1984.Google Scholar
  3. A. Guichardet, Cohomologie des groupes topologiques et des algebres de Lie, Cedic/Fernand Nathan, Paris, 1980MATHGoogle Scholar
  4. M. E. Mayer, Vector Bundles and Gauge Theory, to be published by Springer Verlag, 1986 or 1987.Google Scholar
  5. REVIEW ARTICLES AND LECTURE NOTES (a small selection): H. Aratyn and S. Elitzur, General Cocycles of the Chern-Simons Type, to appear in Journal of Mathematical Physics.Google Scholar
  6. R. Stora, in Recent Progress in Gauge Theories, eds. H. Lehmann et al. Plenum, NY 1984Google Scholar
  7. J. Manes, R. Stora, and B. Zumino, PreprintGoogle Scholar
  8. R. Stora and D. Kastler, Lie-Cartan Systems, to appear in Geometry and PhysicsGoogle Scholar
  9. M. Dubois-Violette, M. Talon, and C. M. Viallet, BRS Algebras, Preprint LPTHE 85–24, Orsay, Mai 1985Google Scholar
  10. B. Zumino, in Relativity, Groups, and Topology, eds. B. S. De Witt and R. Stora, No-Holland, Amsterdam, 1984. Contribution to the Argonne Meeting, Proceedings to be published Several articles (alone or with collaborators) in Nuclear Physics.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Meinhard E. Mayer
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaIrvineUSA

Personalised recommendations