Advertisement

The Stochastic Versus the Euclidean Approach to Quantum Fields on a Static Space-Time

  • Gian Fabrizio De Angelis
  • Diego de Falco
  • Glauco Di Genova
Part of the NATO ASI Series book series (NSSB, volume 144)

Abstract

Let (M,g) be a static manifold (for notational simplicity of dimension 2) with a metric of Lorentzian signature. Fix a global chart
$$ \Sigma :P \in M \to ({x^0},{x^1})\,{\mathbb{R}^2} $$
in which the metric satisfies:
$$ \frac{\partial }{{\partial {x^0}}}{g_{{\mu \nu }}} = 0,\,{g_{{10}}} = 0 $$
(1)

Keywords

Harmonic Oscillator Lorentzian Signature Static Manifold Stochastic Mechanic Wightman Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Guerra, P. Ruggiero, Phys. Rev. Lett. 31 (1973) 1022.Google Scholar
  2. 2.
    F. Guerra, Phys. Rep. 77 (1981) 263.MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    A. Uhlmann, Czech. J. Phys. B 31 (1981) 1249.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    E. Nelson, “Dynamical theories of Brownian motion”, Princeton Univ. Press (1967).MATHGoogle Scholar
  5. 5.
    J.B. Hartle, S. Hawking, Phys. Rev. D 13 (1976) 2188.Google Scholar
  6. 6.
    G.F. De Angelis, D. de Falco, G. Di Genova, “Random fields on Riemannian manifolds”, to appear in Comm. Math. Phys.Google Scholar
  7. 7.
    G.F. De Angelis, D. de Falco, G. Di Genova, “Quantum fields on a gravitational background”, to appear in the proceedings of the I Ascona-Como Meeting “Stochastic processes in classical and quantum systems”.Google Scholar
  8. 8.
    S. Fulling, Phys. Rev. D 5 (1973) 2850.ADSCrossRefGoogle Scholar
  9. 9.
    A. Erdélyi, “Higher transcendental functions”, McGraw-Hill (1953).Google Scholar
  10. 10.
    D.W. Sciama, P. Candela, D. Deutsch, Adv. Phys. 30 (1981) 327.ADSCrossRefGoogle Scholar
  11. 11.
    R. Hoegh-Krohn, Comm. Math. Phys. 38 (1974) 195.MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A. Klein, L. Landau, J. Funct. An. 42 (1981) 368.MathSciNetMATHCrossRefGoogle Scholar
  13. W. Unruh, Phys. Rev. D 14 (1976) 870.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Gian Fabrizio De Angelis
    • 1
    • 2
  • Diego de Falco
    • 1
    • 2
  • Glauco Di Genova
    • 3
  1. 1.Dipartimento di FisicaUniversità di SalernoItaly
  2. 2.I.N.F.N, Sezione di NapoliItaly
  3. 3.S.I.S.S.A.TriesteItaly

Personalised recommendations