Quantum Fields on Manifolds: An Interplay between Quantum Theory, Statistical Thermodynamics and General Relativity

  • Geoffrey L. Sewell
Part of the NATO ASI Series book series (NSSB, volume 144)


We show how the basic axioms of Quantum Field Theory, General Relativity and Statistical Thermodynamics lead, in a model-independent way, to a generalised Hawking-Unruh effect, whereby the gravitational fields carried by a class of space-time manifolds with event horizons thermalise ambient quantum fields.


Event Horizon Minkowski Space Lorentz Boost Rindler Wedge Past Horizon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Glimm and A. Jaffe, ‘Quantum Physics’, Springer, New York, Heidelberg, Berlin, 1981.MATHCrossRefGoogle Scholar
  2. 2.
    J. D. Beckenstein, Phys.Rev.D 7, 949 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    S. W. Hawking, Commun.Math.Phys. 43, 199 (1975).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    W. G. Unruh, Phys.Rev.D 14, 870 (1976).ADSCrossRefGoogle Scholar
  5. 5a.
    J. S. Bell and J. M. Leinaas, Nucl.Phys.B 212, 131 (1983).ADSCrossRefGoogle Scholar
  6. 5b.
    J. S. Bell, R. J. Hughes and J. M. Leinaas, CERN-TH 3948184 Preprint.Google Scholar
  7. 6.
    G. L. Sewell, Annal.Phys. 41, 201 (1982).MathSciNetADSGoogle Scholar
  8. 7.
    R. Kubo, J.Phys.Soc.Japan 12, 570 (1957).MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    P. C. Martin and J. Schwinger, Phys.Rev. 115, 1342 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 9.
    R. Haag, N. M. Hugenholtz and M. Winnink, Commun. Math. Phys. 5, 215 (1967).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 10.
    A. Kossakowski, A. Frigerio, V. Gorini and M. Verri, Commun.Math.Phys. 57, 97 (1977).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 11.
    W. Rindler, Am.J.Phys. 34, 1174 (1966).ADSCrossRefGoogle Scholar
  13. 12.
    D. Kruskal, Phys.Rev. 119, 1743 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  14. 13.
    R. F. Streater and A. S. Wightman, ‘PCT, Spin and Statistics and All That’, Benjamin, New York, Amsterdam, 1964.MATHGoogle Scholar
  15. 14.
    R. Jost, Helv.Phys.Acta. 30, 409 (1957).MathSciNetMATHGoogle Scholar
  16. 15.
    J. Bisognano and E. H. Wichmann, J.Math.Phys. 16, 985 (1975).MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Geoffrey L. Sewell
    • 1
  1. 1.Department of PhysicsQueen Mary CollegeLondonUK

Personalised recommendations