Generalized Aharonov-Bohm Experiments with Neutrons

  • Anton Zeilinger
Part of the NATO ASI Series book series (NSSB, volume 144)


The Aharonov-Bohm effects1 are generally regarded as direct manifestations of the property, that potentials are affecting quantum systems in a way significantly different from the classical case. This stems from the fact, that potentials enter the classical Newtonian equations of motion only through their derivatives, while in quantum mechanics the potentials themselves enter the Schrodinger equation. The Aharonov-Bohm effects often are said to be also manifestations of the nonlocal charactei of quantum mechanics, because there the observed phase shift depends on fields in regions which are inaccessible or practically inaccessible to the interfering electron. It is this latter point which has raised a considerable body of discussion in the scientific, literature2 indicating, that the epistemological significance of the Aharonov-Bohm effects is not yet understood.


Phase Shift Wave Packet Cold Neutron Faraday Cage Interferometer Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Aharonov and D. Bohm, Phys.Rev. 115:485 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    A. Zeilinger, Lett.Nuovo Cim. 25:333 (1979) and references therein.CrossRefGoogle Scholar
  3. 3a.
    R.G. Chambers, Phys.Rev.Lett. 5:3 (1960)ADSCrossRefGoogle Scholar
  4. 3b.
    H.A. Fowler, L. Marton, J.A. Simpson and J.A. Suddeth, J.Appl.Phys. 32:1153 (1961)ADSCrossRefGoogle Scholar
  5. 3c.
    H. Boersch, H. Hamisch, K. Grohmann and D. Wohlleben, Z.Phys. 165:79 (1961)ADSCrossRefGoogle Scholar
  6. 3d.
    G. Mollen-stedt and W. Bayh, Phys.Bl. 18:299 (1962);Google Scholar
  7. 3e.
    A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sugita and H. Fujiwara, Phys.Rev.Lett. 48:1443 (1982).ADSCrossRefGoogle Scholar
  8. 4.
    R. Gähler, J. Kalus and W. Mampe, Phys.Rev.D 25:2887 (1982).ADSCrossRefGoogle Scholar
  9. 5.
    K.D. Finkelstein, C.G. Shull and A. Zeilinger, Int. Conf. on Neutron Scattering, Santa Fé, 1985, in press at Physica.Google Scholar
  10. 6.
    D.M. Greenberger, D.K. Atwood, J. Arthur, C.G. Shull and M. Schlenker, Phys.Rev.Lett. 47:751 (1981).ADSCrossRefGoogle Scholar
  11. 7.
    D.M. Greenberger, A.W. Overhauser, Rev.Mod.Phys. 51:43 (1979).ADSCrossRefGoogle Scholar
  12. 8a.
    Y. Aharonov in Proc. Int. Symp. Foundations of Quantum Mechanics, Tokyo, S. Kamefuchi et al.(Eds.), Phys.Soc.Japan, Tokyo 1984, p. 10Google Scholar
  13. 8b.
    A. Zeilinger, journal de physique, colloque C3:213 (1984).Google Scholar
  14. 9.
    Y. Aharonov and A. Casher, Phys.Rev.Lett. 53:319 (1984).MathSciNetADSCrossRefGoogle Scholar
  15. 10.
    A.I. Ioffe, V.S. Zabiyakin and G.M. Drabkin, Phys.Lett. 111A:375 (1985).ADSGoogle Scholar
  16. 11.
    A. Zeilinger, M.A. Horne and C.G. Shull, in Proc. Int. Symp. Foundations of Quantum Mechanics, Tokyo, S. Kamefuchi et al. (Eds.), Phys.Soc.Japan Tokyo 1984, p. 294.Google Scholar
  17. 12.
    I.S. Shapiro, Pis’ma Zh.Eksp.Teor.Fiz. 35:39 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Anton Zeilinger
    • 1
    • 2
  1. 1.Atominstitut der Österreichischen UniversitätenWienAustria
  2. 2.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations