Infinite Dimensional Lie Algebras and Quantum Physics

  • David Olive
Part of the NATO ASI Series book series (NSSB, volume 144)


Relativistic quantum mechanics poses many unsolved problems in theoretical physics but a new branch of mathematics, closely related to physical ideas, has recently appeared and rapidly developed, shedding new insights upon some of the areas of difficulty. This is study of infinite dimensional Lie algebras such as the affine Kac-Moody algebras and the Virasoro algebra.(1)


Vertex Operator Unitary Representation Magnetic Monopole Relativistic Quantum Mechanic Virasoro Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kac V.G., Infinite-dimensional Lie Algebras — An Introduction (Birkhauser 1983; 2nd Ed. Cambridge U.P. 1985).Google Scholar
  2. 2.
    Papers in “Gauge Theory of Weak and Electromagnetic Interactions”; edited by C.H. Lai (World Scientific 1981).Google Scholar
  3. 3.
    ′t Hooft G., Nucl.Phys. B79 (1974) 276.MathSciNetADSCrossRefGoogle Scholar
  4. 3a.
    Polyakov A.M., JETP Lett. 20 (1974) 194.ADSGoogle Scholar
  5. 4.
    Goddard P., Nuyts J. and Olive D., Nucl.Phys. B125 (1977) 1.MathSciNetADSCrossRefGoogle Scholar
  6. 4a.
    Montonen C. and Olive D., Phys.Lett. 72B (1977) 117.ADSGoogle Scholar
  7. 5.
    Olive D., “Magnetic monopoles and electromagnetic duality conjectures” p.157 in “Monopoles in Quantum Field Theory” (World Scientific 1982).Google Scholar
  8. 5a.
    Olive D and West P., Nucl. Phys. B217 (1983) 1.Google Scholar
  9. 5b.
    Goddard P. and Olive D., “Algebras, Lattices and Strings” p.51 in “Vertex Operators in Mathematics and Physics” (MSRI#3, Springer 1984).Google Scholar
  10. 6.
    Green M.B. and Schwarz J.H., Phys. Lett. 149B (1984) 117.Google Scholar
  11. 7.
    Gross D.J., Harvey J.A., Martinec E. and Rohm R., Nucl.Phys. B256 (1985) 253.MathSciNetADSCrossRefGoogle Scholar
  12. 8.
    Thirring W., Ann. Phys., NY 3 (1958) 91.MathSciNetADSMATHCrossRefGoogle Scholar
  13. 9.
    Skyrme T.H.R., Proc. Roy. Soc. A262 (1961) 237.MathSciNetADSGoogle Scholar
  14. 10.
    Virasoro M., Phys. Rev. D1 (1970) 2933.ADSGoogle Scholar
  15. 11.
    Belavin A.A., Polyakov A.M. and Zamolodchikov A.B., Nucl. Phys. B241 (1984) 333.MathSciNetADSCrossRefGoogle Scholar
  16. 12.
    Friedan D., Qiu Z. and Shenker S., Phys. Rev. Lett. 52 (1984) 1575; p.491 in “Vertex Operators in Mathematics and Physics” (MSRI#3, Springer 1984)Google Scholar
  17. 13.
    Kac V.G., Proceedings of the International Congress of Mathematicians, Helsinki 1978Google Scholar
  18. 13a.
    Lecture Notes in Physics 94 (1979) 441.ADSCrossRefGoogle Scholar
  19. 14.
    Feigin B.L. and Fuchs D.B., Functs. Anal. Prilozhen 16 (1982) 47 [Funct. Anal. and App. 16 (1982) 114].CrossRefGoogle Scholar
  20. 15.
    Goddard P., Kent A and Olive D., Phys. Lett. 152B (1985) 88.MathSciNetADSGoogle Scholar
  21. 16.
    Goddard P., Kent A. and Olive D., “Unitary Representations of the Virasoro and Super Virasoro Algebras”, DAMTP (Cambridge) preprint 85–21.Google Scholar
  22. 17.
    Kac V.G. and Wakimoto M., “Unitarizable Highest Weight Representations of the Virasoro, Neveu-Schwarz and Ramond Algebras”, preprint.Google Scholar
  23. 18.
    Olive D., “Kac-Moody Algebras in Local Quantum Physics” Imperial/TP/84–85/33 preprint, to be published by Plenum.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David Olive
    • 1
  1. 1.The Blackett LaboratoryImperial CollegeLondonUK

Personalised recommendations