Advertisement

Charge, Anomalies and Index Theory

  • R. F. Streater
Part of the NATO ASI Series book series (NSSB, volume 144)

Abstract

In the algebraic approach to quantum theory, due to Haag and others, the primary object is the algebra of observables. Gauge fields, spinor fields and other gauge-dependent quantities, are unobservable and are not primary, but are constructed from the properties of the observables. We explain how this is done.

Keywords

Gauge Group Gauge Transformation Gauge Field Spinor Field Axial Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Haag, in Colloque internationale sur la theorie quantique des champs, Lille, 1958. Centre.National de la Recherche Scientifique. Paris 1957.Google Scholar
  2. R. Haag and B. Schroer. Postulates of Quantum Field Theory. J. Math. Phys. 3, 248–256 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  3. H. Araki. Lectures at ETH, Zurich 1961–2 (unpublished) Einfuhrung in die axiomatsche Quantenfeld theorie.Google Scholar
  4. [2]
    R. Haag and D. Kastler. An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  5. [3]
    H.J. Borchers in Cargese Lectures (1965); Gordon & Breach.Google Scholar
  6. [4]
    S. Doplicher, R. Haag and J.E. Roberts, Local Observables and Particle Statistics Commun. Math. Phys. 23, 199 (1971).MathSciNetADSCrossRefGoogle Scholar
  7. J.E. Roberts, Local cohomology and superselection structure. Commun. Math. Phys., 107–120 (1976).Google Scholar
  8. [5]
    F. Gallone, A. Sparzani, R.F. Streater and C. Ubertone, Twisted condensates of quantized fields. To appear in J. Phys. A.Google Scholar
  9. [6]
    R. Howe, Duality pairs in physics. In Applications of Group Theory in Physics and Mathematical Physics. Amer. Math. Soc. 1985 (Eds. M. Flato, P. Sally and G. Zuckerman).Google Scholar
  10. [7]
    J.S. Bell and R. Jackiw, Nuovo Cimento 51, 47 (1969).ADSGoogle Scholar
  11. [8]
    S. Adler. Axial-vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).ADSCrossRefGoogle Scholar
  12. [8]
    R.F. Streater and I.F. Wilde. Fermion states of a Boson field. Nucl. Phys. B24, 561–575 (1970).ADSCrossRefGoogle Scholar
  13. [9]
    J. Schwinger, Field theory commutators. Phys. Rev. Lett. 3, 296–297 (1959).ADSCrossRefGoogle Scholar
  14. [10]
    L.E. Lundberg. On quasi-free second quantization. Commun. Math. Phys. 50, 103–112 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  15. [11]
    N.H. Christ. Conservation law violation by anomalies. Phys. Rev. D31, 1591–1602 (1980).MathSciNetADSGoogle Scholar
  16. [12]
    G. ′t Hooft. Computation of the quantum effects due to a four-dimensional pseudo-particle. Phys. Rev. 14, 3423 (1976). Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8(1976).Google Scholar
  17. [13]
    G. Gibbons, Cosmological fermion number non-conservation. Phys. Lett. 37, 431 (1979).MathSciNetGoogle Scholar
  18. [14]
    M.F. Atiyah, V.K. Patodi, I.M. Singer: The index of elliptic operators, Math. Proc. Camb. Phil. Soc. 77, 43 (1975).MathSciNetMATHCrossRefGoogle Scholar
  19. [15]
    T.H.R. Skyrme, Proc. Roy. Soc. A247, 260 (1958).ADSGoogle Scholar
  20. [16]
    A.L. Carey and C.A. Hurst, A C*-algebra approach to the Schwinger model. Commun. Math. Phys. 80, 1–22 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  21. [17]
    S.N.M. Ruijsenaas. Gauge invariance and implementability of the S-operator for spin 0 and spin 1/2 particles in time-dependent external fields. Jour. Functl. Anal. 33, 47–57 (1979).CrossRefGoogle Scholar
  22. [17a]
    J. Palmer, Scattering automorphisms of the Dirac field. Jour. Math. Anal. and Appl. 64, 189–215 (1978).MathSciNetMATHCrossRefGoogle Scholar
  23. [18]
    K.O. Friedrichs. Mathematical aspects of the quantum theory of fields. Wiley Interscience, New York (1953).MATHGoogle Scholar
  24. [19]
    G. Labonté, On the nature of “strong” Bogoliubov transformations for fermions. Commun. Math. Phys. 36, 59–72 (1974).ADSCrossRefGoogle Scholar
  25. [20]
    A.K. Raina and G. Wanders, Ann. of Phys. 132, 404–426 (1981).MathSciNetADSCrossRefGoogle Scholar
  26. [21]
    A.L. Carey and S.N.M. Ruijesenaas. On Fermion Gauge Groups, Current Algebras and Kac-Moody Algebras. Research Report 8, Australian National Univ. 1985.Google Scholar
  27. [22]
    T.H.R. Skyrme, Particle states of a quantized meson field. Proc. Roy. Soc. A262, 237 (1961).MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. F. Streater
    • 1
  1. 1.Department of MathematicsKing’s CollegeLondonUK

Personalised recommendations