Quantum Ergodicity and Chaos

  • Göran Lindblad
Part of the NATO ASI Series book series (NSSB, volume 144)


The purpose of this contribution is to discuss how the classical concepts of ergodicity and chaos can be introduced into quantum theory. The scheme presented here treats quantum systems with no classical properties at all, thus it deals with analogs rather than generalizations of the classical notions, and there is no semiclassical limit as a guide. However, it turns out that the structure is quite similar to the classical one, though essentially non-commutative. It deals primarily with finite quantum systems with Hamiltonian dynamics, where the information about the system comes from repeated observations of a subsystem. A typical example is provided by the vibrational motion of a small molecule, where the system is probed through the resonant interaction of a laser beam with one of the normal modes (the ‘active mode’)1. The anharmonic coupling of the modes creates a ‘mode mixing’ and the resulting dynamics may eventually allow us to probe the whole interacting system.


Information Rate Springer Lecture Note Quantum Chaos Phase Space Point Completely Positive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.H. Zewail, Phys. Today 33(11): 27 (1980)CrossRefGoogle Scholar
  2. 2.
    G. Lindblad, in:”Quantum probability and applications II”, L. Accardi, W. von Waldenfels, eds., Springer Lecture Notes in Mathematics 1136 (1985), p 348Google Scholar
  3. 3.
    G. Lindblad, Quantum ergodicity and chaos, Report TRITA-TFY-84–12 Stockholm 1984Google Scholar
  4. 4.
    O. Bohigas, M-J. Giannoni, C. Schmit, in:“Chaotic behaviour in quantum systems”, G. Casati, ed., NATO ASI B120, Plenum, New York (1985), p 103Google Scholar
  5. 5.
    G. Casati, G. Mantica, I. Guarneri, in: Ibid, “Chaotic behaviour in quantum systems”, G. Casati, ed., NATO ASI B120, Plenum, New York (1985), p 113.Google Scholar
  6. 6.
    G. Casati, B.V. Chirikov, F.M. Izrailev, J. Ford, in: “Stochastic behaviour in classical and quantum hamiltonian systems”, G. Casati, ed., Springer Lecture Notes in Physics 93, (1979), p 334CrossRefGoogle Scholar
  7. 7.
    D.L. Shepelyanski, Physica 8D: 208 (1983)Google Scholar
  8. 8.
    V.N. Bagratashvili et al, Sov. Phys. JETP 53: 512 (1981)Google Scholar
  9. 9.
    V.I. Arnold, A. Avez, “Ergodic problems in classical mechanics”, W.A. Benjamin, New York 1968Google Scholar
  10. 10.
    R. Shaw, Z. Naturforschung, 36a:81 (1981)ADSGoogle Scholar
  11. 11.
    Ya. B. Pesin, Ya. G. Sinai, Sov. Sci. Rev. C2: 53 (1981)MathSciNetMATHGoogle Scholar
  12. 12.
    Yu.I. Kifer, in:“Global theory of dynamical systems”, A. Nitecki, C. Robinson, eds., Springer Lecture Notes in Mathematics 819 (1979) p 291Google Scholar
  13. 13.
    B.V. Chirikov, F.M. Izrailev, D.L. Shepelyanski, Sov. Sci. Rev. C2:209 (1981)MATHGoogle Scholar
  14. 14.
    M.V. Berry, in: “Topics in nonlinear dynamics”, S. Jorna, ed., AIPConf. Proc. 46: 16 (1978)Google Scholar
  15. 15.
    G. Lindblad, Commun. Math. Phys. 65: 281 (1979)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    A. Frigerio, V. Gorini, J. Math. Phys. 17: 2123 (1976)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    R.F. Streater, A.S. Wightman, “PCT, spin & statistics and all that”, W.A. Benjamin, New York 1964MATHGoogle Scholar
  18. 18.
    L. Accardi, A. Frigerio, J.T. Lewis, Publ. RIMS (Kyoto U.) 18:97 (1982)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    G.G. Emch: Commun. Math. Phys. 49: 191 (1976)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    O. Bratteli, D.W. Robinson, “Operator algebras and quantum statistical mechanics”, Vol I, Springer, New York 1979MATHGoogle Scholar
  21. 21.
    G. Lindblad, A reconstruction theorem for quantum dynamical systems, Report TRITA-TFY-85–23, Stockholm 1985Google Scholar
  22. 22.
    A. Connes, E. Størmer, Acta Math. 134: 289 (1975)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    A. Connes, C.R. Acad. Sc. Paris 301, Sér. I, no 1: 1 (1985)MathSciNetMATHGoogle Scholar
  24. 24.
    B.V. Chirikov, Phys. Reports 52, no 5: 263 (1979)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Göran Lindblad
    • 1
  1. 1.Department of Theoretical Physics RoyalInstitute of TechnologyStockholmSweden

Personalised recommendations