Quantum Systems Periodically Perturbed in Time

  • J. Bellissard
Part of the NATO ASI Series book series (NSSB, volume 144)


In 1974, J.E. Bayfield and P.M. Koch [1] performed a puzzling experiment on microwave ionization of hydrogen atoms. A beam of hydrogen atoms in a highly excited state (typically 50≤n≤80) crosses a microwave chamber. At the end of the cavity a counter measures the ionization rate. The results shown in fig. 1 below exhibit a transition between a regime of low field amplitude where almost all atoms are stable and a regime of high field amplitude where almost all atoms are ionized. Several frequencies were used but even the highest one represents only about 1% of the photon frequency for excitation to the continuum. This means that a perturbation theory is useless since it would require at least the calculation of hundred orders, and even in this case it would give significant predictions only in a very small range of values of the field amplitude. All other methods of spectroscopy failed to explain this effect. In 1978, following a suggestion by Lamb, J.6. Leopold and I.e. Percival [2] showed from a numerical simulation, that a purely classical treatment was quite efficient in describing quantitatively the experimental datas. Following this idea, R. Jensen [3] proposed in 1982 a theoretical scheme using the classical evolution of a one dimensional hydrogen atom in order to estimate the critical field amplitude: restricting the motion to the negative energy configurations the ionization occurs when the field amplitude is sufficiently high to create a transition to classical chaos.


Field Amplitude Rydberg Atom Pure Point Scatter Theory Pure Point Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.E. Bayfield, P.M. Koch, Multiphotooic Ionization of Highly Excited Hydrogen Atoms, Phys. Rev. Lett., 33, (1974). 258.ADSCrossRefGoogle Scholar
  2. [2] a)
    J.G. Leopold, I.C. Percival, Microwave Ionization of Rydberg Atoms, Phys. Rev. Lett., 41 (1978). 944.ADSCrossRefGoogle Scholar
  3. [2] b)
    J.G. Leopold, I.C. Percival, Ionization of Highly Excited Atoms by Electric Fields III: Microwave Ionization and Excitation. J. Phys.,B12, (1979). 709–721ADSGoogle Scholar
  4. [3] a)
    R. Jensen, Stochastic Ionization of Surface State Electrons. Phys. Rev. Lett.. 49, (1982). 1365.ADSCrossRefGoogle Scholar
  5. [3] b)
    R. Jensen, Stochastic Ionization of Surface State Electrons: Classical theory, Phys. Rev., A30, (1984). 386ADSGoogle Scholar
  6. [4]
    K.A.H. Van Leeuwen, G.V. Oppen, S. Renwick, J.B. Bowlin, P.M. Koch, R.V. Jensen, O. Rath, D. Richards, J. Leopold, Microwave ionization of Hydrogen Atoms: Experiments versus Classical Dynamics. To appear in Phys. Rev. Letter. 1985.Google Scholar
  7. [5] a)
    G. Casati, B.V. Chirikov, D.L. Shepelyansky. Quantum Limitations for Chaotic Excitation of the Hydrogen Atom in a Monochromatic Field. Phys.Rev. Lett.. 53, (1984). 2525–2528.ADSCrossRefGoogle Scholar
  8. [5] b)
    A.K. Dhar, P.M. Izraelev, M.A. Nagarajan, Behavior of Hydrogen Atoms under the Influence of Periodic Times Dependent Electric Fields. Preprint 83–162. Novossibirsk. (1985)Google Scholar
  9. [6]
    P. Koch, Interaction of Intense Microwaves with Rydberg Atoms. J. de Phys. Colloques C2, 43, 187–210,(1982)Google Scholar
  10. [7]
    S. Fishman, D.R. Grempe, R.E. Prange. Finite Planck’s Constant Scaling at Stochastic Transition of Dynamical System. Preprint Univ. of Maryland (1984).Google Scholar
  11. [8]a)
    K. Yajima, Scattering Theory for Schrödinger Equations with Potential Periodic in Time. J.Math. Soc. Japan. 29, (1977). 729–743.MathSciNetMATHCrossRefGoogle Scholar
  12. [8]b)
    K. Yajima Resonances for the AC-Stark Effect. Coram. Math. Phys.. 87, 331–352. (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  13. [9] a)
    J.S. Howland, Stationary Scattering Theory for the Time Dependent Hamiltonians. Math. Ann., 207. (1974), 315–335.MathSciNetMATHCrossRefGoogle Scholar
  14. [9] b)
    J.S. Howland, Scattering Theory for Hamiltonians Periodic in Time. Indiana Univ. Math. J.. 28, (1979). 471–494.MathSciNetMATHCrossRefGoogle Scholar
  15. [10]
    J. Aguilar, J.M. Combes, A class of analytic perturbations for the one body Schrödinger Hamiltonians, Coram. Math. Phys., 22, (1971). 269–279.MathSciNetADSMATHCrossRefGoogle Scholar
  16. [11]
    T. Kato, Linear evolution equation of “hyperbolic type”, T. Fac. Sci. Univ. Tokyo. Sec.IA. 17,(1970), 241–258.MATHGoogle Scholar
  17. [12]
    H. Kitada, K. Yajima. A scattering theory for time-dependent long range potentials. Duke Math.J..49, (1982). 341–376.MathSciNetMATHCrossRefGoogle Scholar
  18. [13]
    R. Blumel, U. Smilansky, Quantum Mechanical Suppression of Classical Stochasticity of the Dynamics of a Periodically Perturbed Surface State Electrons. Phys. Rev. Lett., 52, (1984), 137–140ADSCrossRefGoogle Scholar
  19. [14]
    J. Bellissard, Stability and Instability in Quantum Mechanics, in “Trends in the Eighties” Ph. Blanchard ed., Singapore, (1985).Google Scholar
  20. [15] a)
    G. Casati, B.V. Chirikov, F.M. Izraelev, J. Ford, in “Stochastic Behavior in Classical and Quantum Hamiltonian Systems”, Lecture Notes in Physics, 93, (1979). G. Casati & J. Ford eds., Springer, Berlin, Heidelberg, New York.CrossRefGoogle Scholar
  21. [15] b)
    F.M. Izraelev, D.L. Shepelyanski, Quantum Resonances for a Rotator in a Non Linear Periodic Field, Theor. Mat. Fiz., 43, (1980), 553–560, (english translation).Google Scholar
  22. [15] c)
    B.V. Chirikov, F.M. Izraelev, D.L. Shepelyansky, in Soviet Scientific Review, C2, (1981).Google Scholar
  23. [15] d)
    B.V. Chirikov, F.M. Izraelev, D.L. Shepelyansky Chaotic Behavior in Quantum Systems, G. Casati Ed., Plenum Press. New York. 1985.Google Scholar
  24. [16] a)
    S. fishman, D.R. Grempel, R.E. Prange, Chaos, Quantum Recurrences and Anderson Localization. Phys. Rev. Lett.. 49, (1982). 509–512.MathSciNetADSCrossRefGoogle Scholar
  25. [16] b)
    S. fishman, D.R. Grempel, R.E. Prange, “Chaotic Behavior in Quantum Systems”. G. Casati ed., Plenum Press, New York. (1984).(ref.ib)Google Scholar
  26. [16] c)
    S. fishman, D.R. Grempel, R.E. Prange, Quantum Dynamics of anon Integrable System, Phys. Rev., A29 (1984), 1639–1647.ADSGoogle Scholar
  27. [17]
    B. Dorizzi, B. Grammaticos, Y. Pomeau. The Periodically Kicked Rotator: Recurrence and/or Energy Growth. J. of Stat. Phys., 37. (1984). 93–108.MathSciNetADSCrossRefGoogle Scholar
  28. [18]
    M. Samuelides, R. Fleckinger, L. Touzillier, J. Bellissard, The Rise of Chaotic Behavior in Quantum Systems and Spectral Transition. Preprint Marseille CPT- 85/P. 1789, (June 1985).Google Scholar
  29. [19]
    G. Casati, I. Guarneri, Non Recurrent Behavior in Quantum Dynamics. Comm. Math. Phys., 95, (1984). 121–127.MathSciNetADSMATHCrossRefGoogle Scholar
  30. [20]
    D.L. Shepelyansky, Some Statistical Properties of Simple Classically Stochastic Quantum Systems. Physica. 8D, (1983), 208–222.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. Bellissard
    • 1
  1. 1.Université de Provence and Centre de Physique ThéoriqueMarseilleFrance

Personalised recommendations