Advertisement

Are Dirac Electrons Faster than Light?

  • G. F. De Angelis
Part of the NATO ASI Series book series (NSSB, volume 144)

Abstract

The stochastic mechanics of a Dirac particle in 1+1 space-time dimensions with an arbitrary external electromagnetic field was constructed in a previous paper1. The resulting theory is a relativistic extension of Nelson’s stochastic mechanics for a Schrödinger particle2,3. For every normalized solution \( \psi (t,x) = \left[ \begin{gathered} \psi (t,x, + 1) \hfill \\ \psi (t,x, - 1) \hfill \\ \end{gathered} \right] \) of the Dirac equation in 1+1 dimensions there is an associated stochastic process t→ξt such that Prob. \( ({\xi_t} \in A\,and\,{c^{{ - 1}}}{\dot{\xi }_t} = \pm 1) = {\int_A {|\psi (t,x,\pm 1)|}^2}dx \) at any time t and for every measurable subset A of the real line. Each process t→ξt describes a point particle moving along a line with the speed of light c and which inverts its motion at random times tracking a zig-zag path in two dimensional Minkowski space-time. This scenario is reminiscent of Feynman’s path integral description of the Dirac propaga-tor in 1+1 space-time dimensions4.

Keywords

Dirac Equation Sojourn Time Measurable Subset Dirac Particle External Electromagnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.F. De Angelis, G. Jona-Lasinio, M. Serva and N. Zanghi: “Stochastic mecha-nics of a Dirac particle in two space-time dimensions”, preprint Dipartimento di Fisica, Università di Roma “La Sapienza”, (1985). To appear in J.Phys.A.Google Scholar
  2. 2.
    E. Nelson: Phys.Rev., 150,(1966),1079.ADSCrossRefGoogle Scholar
  3. 3.
    E. Nelson: “Dynamical Theories of Brownian Motion”, Princeton University Press, (1967).MATHGoogle Scholar
  4. 4.
    R.P. Feynman and A.R. Hibbs: “Quantum Mechanics and Path Integrals”, Mc Graw-Hill, (1965).MATHGoogle Scholar
  5. 5.
    T. Ichinose: Physica, 124A ,(1984),419.MathSciNetADSGoogle Scholar
  6. 6.
    B. Gaveau, T. Jacobson, M. Kac and L.S. Schulman: Phys.Rev.Letters,53,(1984), 419.MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    T. Jacobson: “Spinor chain path integral for the Dirac electron”, preprint Austin University, Texas, (1984).Google Scholar
  8. 8..
    Ph. Blanchard, Ph. Combe, M. Sirugue and M. Sirugue-Collin: “Probabilistic solution of Dirac equation”, preprint BiBoS, Bielefeld, (1985).Google Scholar
  9. 9.
    S. Albeverio and R. Høegh-Krohn: J. of Math. Phys., 15, (1974), 1745.ADSMATHCrossRefGoogle Scholar
  10. 10..
    E. Nelson: “Quantum Fluctuations”, Princeton University Press,(1985).MATHGoogle Scholar
  11. 11..
    E. Nelson: “Field theory and the future of stochastic mechanics”, Procee-dings of the First International Ascona-Como Meeting Stochastic Processes in Classical and Quantum Systems , June 1985, to appear in Lectures Notes in Physics.Google Scholar
  12. 12.
    G.F. De Angelis and G. Jona-Lasinio: J.Phys.A, 15 , (1982), 2053.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. F. De Angelis
    • 1
    • 2
  1. 1.Dipartimento di FisicaUniversità di SalernoSalernoItaly
  2. 2.INFN Sezione di NapoliItaly

Personalised recommendations