Quantum Markov Processes Driven by Bose Noise

  • Hans Maassen
Part of the NATO ASI Series book series (NSSB, volume 144)

Abstract

A brief introduction is given to Markov dilations, i.e. quantum Markov processes as constructed from their transition probability semigroups. The dilation is constructed of the two-level atom, decaying to its ground state, under the assumption of cononical commutation relations for the outside world.

Keywords

Agram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.E. Evans and J.T. Lewis, Dilations of Irreversible Evolutions in Algebraic Quantum Theory, Comm. Dublin Inst. Adv. Stud. A, 24(1977).MATHGoogle Scholar
  2. 2.
    B. Kümmerer and W. Schröder, A new construction of unitary dilations: singular coupling to white noise, in: “Quantum Probability and Applications II”, Lecture Notes in Mathematics 1136, Springer 1985.Google Scholar
  3. 3.
    H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys. 53(1980)569–615.MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    E.B. Davies, Markovian Master Equations, Comm. Math. Phys. 39(1974) 91–110.MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    E.B. Davies, Some contraction semigroups in quantum probability, Z. Wahrsch. Verw. Geb. 23(1972)261–273.MATHCrossRefGoogle Scholar
  6. 6.
    B. Kümmerer, Markov Dilations on W*-Algebras, Journ.Funct.Ana1. 63(1985)139–177.MATHCrossRefGoogle Scholar
  7. 7.
    B. Kümmerer, On the structure of Markov dilations on W*-algebras, in: “Quantum Probability and Applications II”, Lecture Notes in Mathematics 1136, Springer 1985.Google Scholar
  8. 8.
    A. Frigerio, Covariant Markov Dilations of Quantum Dynamical Semigroups, Preprint, Milan 1984.Google Scholar
  9. 9.
    H. Maassen, The construction of continuous dilations by solving quantum stochastic differential equations, Semesterbericht Funktionanalysis, Tübingen, summer 1984.Google Scholar
  10. 10.
    R.L. Hudson and K.R. Parthasarathy, Quantum Itô’s formula and Stochastic Evolutions, Comm. Math. Phys. 93(1984)301–323MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    D. Applebaum and R.L. Hudson, Fermion Itô’s formula and stochastic evolutions, Comm. Math. Phys. 96(1984)473–496MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    M. Lindsay, A quantum stochastic calculus, thesis, Nottingham 1985.Google Scholar
  13. 13.
    H. Maassen, Quantum Markov processes on Fock space described by integral kernels, in: “Quantum Probability and Applications II”, Lecture Notes in Mathematics 1136, Springer 1985.Google Scholar
  14. 14.
    B.Sz.-Nagy and C. Foias, “Harmonic analysis of operators on Hilbert space”, North Holland, Amsterdam (1970).MATHGoogle Scholar
  15. 15.
    A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Mathematics 261, Springer 1972.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Hans Maassen
    • 1
  1. 1.Department of MathematicsDelft Technical UniversityDelftThe Netherlands

Personalised recommendations