Advertisement

Parallel Kalman Filter Bank Design for Adaptive Image Restoration

  • S. Tzafestas
  • M. Skolarikos
Part of the Applied Information Technology book series (AITE)

Abstract

One of the basic problems in image reconstruction and restoration is to improve the visual quality of the degraded data of the image at hand. In many practical cases, the observed image is a degraded version of the ideal (original) image due to noise and blur. The problem which is solved here is that of finding an optimal estimate of the ideal image on the basis of the observed function that describes the degraded image and a specific optimality criterion. The image is modelled by a linear state space model involving space invariant additive Gaussian white noise. The adaptive image restoration is performed using a parallel bank of filters (partitioning approach) for estimating the state of the image model when the covariance function of the observed image has a separable exponential form depending on an unknown parameter “a”. The method has so far been tested with simulated images.

Keywords

Kalman Filter Point Spread Function State Space Model Image Model Image Restoration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.C. Andrews and B.R. Hunt, 1977, Digital image restoration. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  2. 2.
    H.C. Andrews, 1974, Digital image restoration: A survey. Computer, vol. 8, pp. 36–45.CrossRefGoogle Scholar
  3. 3.
    B.R. Hunt, 1975, Digital image processing. Proc. IEEE, vol. 63, pp. 693–708.CrossRefGoogle Scholar
  4. 4.
    N.E. Nahi, 1972, Role of recursive estimation in statistical image enhancement. Proc. IEEE, vol. 60, pp. 872–877.CrossRefGoogle Scholar
  5. 5.
    A.O. Aboutalib, L.M. Silverman, 1975, Restoration of motion degraded images. IEEE Trans. Circuits and Systems, vol. CAS-22, pp. 278–286.CrossRefGoogle Scholar
  6. 6.
    A.O. Aboutalib, M.S. Murphy and L.M. Silverman, 1977, Digital restoration of images degraded by general motion blurs. IEEE Trans. Auto Control, vol. AC-22, pp. 294–302.CrossRefGoogle Scholar
  7. 7.
    M.S. Murphy and L.M. Silverman, 1978, Image model representation and line-by-line recursive restoration. IEEE Trans. Auto Control, vol. AC-23, No. 5, pp. 809–816.CrossRefGoogle Scholar
  8. 8.
    A. Habibi, 1972, Two dimensional Bayesian estimate of images. Proc. IEEE, vol. 60, pp. 878–883.CrossRefGoogle Scholar
  9. 9.
    J.W. Woods and C.H. Radewan, 1977, Kaiman filtering in two dimensions. IEEE Trans. on Inf. Theory, vol. 23, pp.473–482.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D.P. Panda, A.C. Cak, 1977, Recursive least squares smoothing of noise in images. IEEE Trans. on Acoust., Sp. Signal, 25, 520–524.CrossRefGoogle Scholar
  11. 11.
    B.R. Suresh, B.A. Shenoi, 1981, New results in 2-D Kaiman filtering with applications to image restoration. IEEE Trans on Circuits and Syst., vol. 28, No. 4, pp. 307–319.CrossRefGoogle Scholar
  12. 12.
    L. Baroncelli, A. Del Bimbo, G. Zappa, 1980, 2-D Kaiman filtering with applications to the restoration of scintigraphic images. Digital Signal Processing (V. Cappellini and A.G. Constantinides Eds.), pp. 183–186, Academic Press.Google Scholar
  13. 13.
    H.J. Trussell and B.R. Hunt, 1978, Sectioned methods for image restoration. IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-26, p. 157.CrossRefGoogle Scholar
  14. 14.
    J.S. Lim, 1980, Image restoration by short space spectral subtraction. IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, p. 191.CrossRefGoogle Scholar
  15. 15.
    S.A. Rajala and R.J. P. de Figueiredo, 1981, Adaptive nonlinear restoration by a modified Kaiman filtering approach. IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, p. 1033.CrossRefGoogle Scholar
  16. 16.
    P. Chan and J.S. Lim, 1985, One-dimensional processing for adaptive image restoration. IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, No. 1, p. 117.CrossRefGoogle Scholar
  17. 17.
    J.F. Abramatic and L. Silverman, 1982, Nonlinear Restoration of Noisy images. IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-4, p. 141.CrossRefGoogle Scholar
  18. 18.
    J.S. Lee, 1980, Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-2, p. 165.CrossRefGoogle Scholar
  19. 19.
    D.T. Magill, 1965, Optimal adaptive estimation of sampled stochastic processes. IEEE Trans. Auto. Control, vol. AC-10, p. 434.MathSciNetCrossRefGoogle Scholar
  20. 20.
    D.G. Lainiotis, 1971, Optimal adaptive estimation: structure and parameter adaptation. IEEE Trans. Auto. Control, vol. AC-16, p. 160.MathSciNetCrossRefGoogle Scholar
  21. 21.
    S.G. Tzafestas, 1980, Partitioning approach to distributed parameter filtering. Ric. Automatica, vol. 11, No. 1, p.51.MathSciNetMATHGoogle Scholar
  22. 22.
    T. Katayama, 1982, Restoration of images degraded by motion blur and noise. IEEE Trans. Auto. Control, vol. AC-27, p. 1024.MathSciNetCrossRefGoogle Scholar
  23. 23.
    S.G. Tzafestas, 1985, Three dimensional image restoration using ARMA modelling and ML estimation. Digital Signal Processing, (A. Luque, A.R. Figueiras Vidal and V. Cappellini, Eds.), vol. II, pp. 227–232, North Holland.Google Scholar
  24. 24.
    S.G. Tzafestas and N.J. Theodorou, 1984, Multidimensional State space models: A comparative overview. Mathematics and Computers in Simulation, vol. 26, p. 432.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    N.J. Theodorou and S.G. Tzafestas, 1985, Reducibility and factorizability of multivariable polynomials. C-TAT: Control Theory and Advanced Technology, vol. 1, No. 1, p. 25.Google Scholar
  26. 26.
    A.K. Jain and J.R. Jain, 1978, Partial differential equations and finite difference methods in image processing. Part I — Image representation, J. Optimiz. Theory and Advanced Technology, vol. 23, p. 65, Sept., 1977; Part II — Image restoration, IEEE Trans. Auto Control, vol. AC-23, No. 5, p. 817, Oct., 1978.CrossRefGoogle Scholar
  27. 27.
    S.G. Tzafestas, 1981, Partitioned adaptive filtering and control of distributed systems with space-dependent unknown parameters. Mathematics and Computers in Simulation, vol. 23, p. 206.MATHCrossRefGoogle Scholar
  28. 28.
    P. Stavroulakis and S.G. Tzafestas, 1982, Multipartitioning in distributed-parameter adaptive estimation. Int. J. Systems Science, vol. 13, p. 301.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. Tzafestas
    • 1
  • M. Skolarikos
    • 1
  1. 1.Control and Automation Group, Computer Engineering DivisionNational Technical UniversityZografou, AthensGreece

Personalised recommendations