A Preliminary Model of the Role of Upper Ocean Chemical Dynamics in Determining Oceanic Oxygen and Atmospheric Carbon Dioxide Levels

  • J. L. Sarmiento
  • J. R. Toggweiler
Part of the NATO Conference Series book series (NATOCS, volume 17)


A first version is presented of equations for a three-dimensional model of nutrient and carbon cycling in the oceans. An analytical solution of these equations has been obtained for a one-and-a-half-dimensional “pipe” model. This solution shows that atmospheric CO2 can be varied by changing the level of preformed nutrients. It is suggested that this mechanism may explain the lower pCO2 values of the last ice age.


Particulate Organic Carbon Sediment Trap Glacial Period Redfield Ratio Ocean Circulation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacon, M.P., and Anderson, R.F., 1982, Distribution of thorium isotopes between dissolved and particulate forms in the deep sea, J. Geophys. Res., 87:2045.CrossRefGoogle Scholar
  2. Boyle, E.A., and Kegwin, L.D., 1982, Deep circulation of the North Atlantic over the last 200,000 years: Geochemical evidence, Science, N.Y., 218:784.CrossRefGoogle Scholar
  3. Broecker, W.S., 1982, Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46:1689.CrossRefGoogle Scholar
  4. Bryan, K., 1969, A numerical method for studying the world ocean, J. Comput. Phys., 1:347.CrossRefGoogle Scholar
  5. Ennever, F.K., and McElroy, M.B., 1985, Changes in atmospheric CO2: Factors regulating the glacial to interglacial transition, in: “The carbon cycle and atmospheric CO2: Natural variations Archaen to present”, Geophys. Monogr. Ser., Volume 32, E.T. Sundquist and W.S. Broecker, eds, pp.154–162, American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  6. Grill, E.V., 1970, A mathematical model for the marine dissolved silicate cycle, Deep-Sea Res., 17:245.Google Scholar
  7. Knauer, G.A., and Martin, J.H., 1981, Primary production and carbon-nitrogen fluxes in the upper 1500m of the northeast Pacific, Limnol. Oceanogr., 26:181.CrossRefGoogle Scholar
  8. Knauer, G.A., Martin, J.H., and Bruland, K.W., 1979, Fluxes of particulate carbon, nitrogen, and phosphorus in the upper water column of the northeast Pacific, Deep-Sea Res., 26:97.CrossRefGoogle Scholar
  9. Knox, F., and McElroy, M.B., 1984, Changes in atmospheric CO2: Influence of the marine biota at high latitude, J. Geophys. Res., 89:4629.CrossRefGoogle Scholar
  10. Kremer, J.N., and Nixon, S.W., 1978, “A Coastal Marine Ecosystem”, Springer Verlag, New York.CrossRefGoogle Scholar
  11. Levitus, S., 1982, “Climatological Atlas of the World Ocean”, NOAA Professional Paper 13, U.S. Department of Commerce, Rockville.Google Scholar
  12. Neftel, A., Oeschger, H., Swander, J., Stauffer, B., and Zumbrunn, R., 1982, Ice core sample measurements give atmosphere 002 content during the past 40,000 years, Nature, Land., 295:220.CrossRefGoogle Scholar
  13. Sarmiento, J.L., 1983, A simulation of bomb tritium entry into the Atlantic Ocean, J. Phys. Oceanogr., 13:1924.CrossRefGoogle Scholar
  14. Sarmiento, J.L., and Toggweiler, J.R., 1984, A new model for the role of the oceans in determining atmosphere PCO2, Nature, Lond., 308:621.CrossRefGoogle Scholar
  15. Shackleton, N.J., 1977, Tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, in: “The Fate of Fossil Fuel CO2 in the Ocean”, N. Anderson and A. Malahoff, eds, pp. 401–428, Plenum Press, New York.Google Scholar
  16. Siegenthaler, U., and Wenk, T., 1984, Rapid atmospheric CO2 variations and ocean circulation, Nature, Lond., 308:624.CrossRefGoogle Scholar
  17. Suess, E., 1980, Particulate organic carbon flux in the oceans - surface productivity and oxygen utilization, Nature, Lond., 288:260.CrossRefGoogle Scholar
  18. Toggweiler, J.R., and Sarmiento, J.L., 1985, Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water in high latitudes. in: “The carbon cycle and atmospheric CO2: Natural variations Archaen to present”, Geophys. Monogr. Ser., Volume 32, ed. E.T. Sundquist and W.S. Broecker, eds, pp.163–184, American Geophysical Union, Washington, C.DCrossRefGoogle Scholar
  19. Wenk, T., and Siegenthaler, U., 1985, The high-latitude coean as a control of atmospheric 002, in: The carbon cycle and atmospheric CO2: Natural variations Archaen to present, Geophys. Monogr. Ser., vol. 32, E.T. Sundquist and W.S. Broecker, eds, pp.185–194, American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  20. Wyrtki, K., 1962, The oxygen minima in relation to ocean circulation, Deep-Sea Res., 9:11.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. L. Sarmiento
    • 1
  • J. R. Toggweiler
    • 1
  1. 1.Geophysical Fluid Dynamics ProgramPrinceton UniversityPrincetonUSA

Personalised recommendations