Advertisement

Lipases, Cholesterylesterases and Carboxylesterases in Lymphoid Cell Lines: Substrate Specificity and Relation to Wolman’s, Cholesteryl Ester Storage Diseases and Lipid Storage Myopathy

  • R. Salvayre
  • A. Nègre
  • A. Maret
  • J. Radom
  • P. Rogalle
  • Q. Q. Dang
  • S. Gatt
  • L. Douste-Blazy
Part of the NATO ASI Series book series (NSSA, volume 116)

Abstract

The lysosomal acid lipase hydrolyses neutral glycerides as well as cholesteryl esters1. These lipids might originate from extracellular sources (e.g. the serum lipoproteins) or be biosynthesized by the cellular enzymes. The genetic deficiency of acid lipase is the primary defect of two distinct hereditary disorders: Wolman disease and cholesteryl ester storage disease (or polycorie cholestérolique de l’adulte)2–5. Both diseases are characterized by the massive lysosomal storage of neutral lipids, but differ in clinical aspects and evolution: Wolman disease patients are affected with severe gastro-intestinal symptoms, hepatosplenomegaly, adrenal calcifications and death occurs generally in the first year of life, while cholesteryl ester storage disease is characterized by hepatosplenomegaly without adrenal invol-vement and is compatible with an adult life2,3,5.

Keywords

Cholesteryl Ester Lymphoid Cell Line Acid Lipase Acyl Ester Vary Chain Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.D. Patrick and B.D. Lake, Wolman’s disease, in “Lysosomes and Storage Diseases”, H.G. Hers and F. Van Hoff, eds, Academic Press, p. 453, New York (1973).Google Scholar
  2. 2.
    M. Wolman, V.V. Sterk, S. Gatt and M. Frenkel, Primary familial xanthomatosis with involvement and calcification of the adrenals. Reports of two more cases in siblings of a previously described infant, Pediatrics 28: 742 (1961).PubMedGoogle Scholar
  3. 3.
    A. Lageron, H. Lichtenstein, F. Bodin and M. Conte, Polycorie cholestérolémique de l’adulte, Med. Chir. Dig. 4: 9 (1975).PubMedGoogle Scholar
  4. 4.
    A.D. Patrick and B.D. Lake, Deficiency in acid lipase in Wolman’s disease. Nature, Lond. 222: 1067 (1969).CrossRefGoogle Scholar
  5. 5.
    G. Assmann and D.S. Fredrickson, Acid lipase deficiency: Wolman’s disease and cholesteryl ester storage disease, in “The Metabolic Basis of Inherited Diseases”, J.B. Stanbury, J.B.Wyngaarden, D.S. Fredrickson, J.L. Goldstein and M.S. Brown, eds, 5th ed., p. 803, MacGraw Hill, New York (1983).Google Scholar
  6. 6.
    W. Gilder, L. Weiss and O. Wieland, Triglyceride breakdown in rat liver. The demonstration of three different lipases, Biochim. Biophys. Acta 187: 173 (1969).CrossRefGoogle Scholar
  7. 7.
    S. Gatt, Y. Barenholtz, R. Goldberg and T. Dinur, Assay of enzymes of lipid metabolism with colored and fluorescent derivatives of natural lipids, Meth. Enzymol. 72: 351 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Nègre, R. Salvayre, A. Dagan, C. Borrone and S. Gatt, New spectrophotometric assays of acid lipase and their use in the diagnosis of Wolman and cholesteryl ester storage diseases, Anal. Biochem. 145: 398 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Nègre, R. Salvayre, A. Dagan and S. Gatt, New fluorometric assays of lysosomal acid lipase in the diagnosis of Wolman and cholesteryl ester storage diseases, Clin. Chim. Acta 149: 81 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Nègre, R. Salvayre, M. Vuillaume, P. Durand and L. Douste-Blazy, Enzyme studies on EBV-transformed cell lines from Wolman’s disease: lipases, cholesterol-esterase and 4-methylumbelliferyl-acyl ester hydro-lases, Biochim. Biophys. Acta 794: 89 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Nègre, R. Salvayre, M. Vuillaume, P. Durand and L. Douste-Blazy, Acid lipases and carboxylesterases in Epstein-Barr virus transformed lymphoid cell lines from Wolman’s disease: influence of fatty acid structure of substrate, Enzyme 31: 241 (1984).PubMedGoogle Scholar
  12. 12.
    O. Morand, E. Fibach, N. Livni and S. Gatt, Induction of lipid storage in cultured leukemic myeloid cells by pyrene-dodecanoic acid, Biochim. Biophys. Acta 793: 95 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Nègre, A. Maret, R. Salvayre, G. Farré, L. Douste-Blazy and S. Gatt, Use of fluorescent fatty acids for labelling acid lipase-deficient cells, in: “Enzymes of Lipid Metabolism”, L. Freysz and S. Gatt, eds (joined paper).Google Scholar
  14. 14.
    J.L. Goldstein, S.E. Dana, J.R. Faust, A.L. Beaudet and M.S. Brown, Role of lysosomal acid lipase in the metabolism of plasma low density lipoprotein, J. Biol. Chem. 250: 8487 (1975).PubMedGoogle Scholar
  15. 15.
    J.L. Goldstein and M.S. Brown, Familial hypercholesterolemia, in: “The Metabolic Basis of Inherited Diseases”, J.B. Stanbury, J.B. Wyngaarden, D.S. Fredrickson, J.L. Goldstein and M.S. Brown, eds, 5th ed., p. 672, MacGraw Hill, New York (1983).Google Scholar
  16. 16.
    M.C. Cabot and S. Gatt, The hydrolysis of triacylglycerol and diacylglycerol by a rat microsomal lipase with an acidic pH optimum, Biochim. Biophys. Acta 530: 508 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Rousseau, G. Dubois and S. Gatt, Subcellular distribution of diacylglycerol lipase in rat and mouse brain, Neurochem. Res. 8: 417 (1981).CrossRefGoogle Scholar
  18. 18.
    J.K. Huttunen, Adipose tissue lipases and their hormonal regulation, Scand. J. Clin. Lab. Invest. 29: 3. 1a (1972).Google Scholar
  19. 19.
    K. Siddle and C.N. Hales, Hormonal control of adipose tissue lipolysis. Proc. Nutr. Soc. 34: 233 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    J.C. Khoo, L. Berglund, D. Jensen and D. Steinberg, Hormone-sensitive lipase of rat adipose tissue. Biochim. Biophys. Acta 619: 440 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    E. Lengle and R.P. Geyer, Strain L fibroblast lipases. Purification and properties, Biochim. Biophys. Acta 296: 411 (1973).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Stam and W.C. Hülsmann, Neutral lipase of rat heart: an inducible enzyme ?, Biochem. Biophys. Res. Commun. 104: 333 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    R.A. Coleman and E.B. Haynes, Differentiation of microsomal from lysosomal triacylglycerol lipase activities in rat liver, Biochim. Biophys. Acta 751: 230 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    E.E. Schneeberger, R.D. Lynch and R.P. Geyer, Formation and disappearance of triglyceride droplets in strain L fibroblasts, Exp. Cell. Res. 69: 193 (1971).PubMedCrossRefGoogle Scholar
  25. 25.
    T. Tsujita and H. Okuda, Carboxylesterases in rat and human sera and their relationship to serum aryl acylamidases and cholinesterases, Eur. J. Biochem. 113: 215 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. Salvayre
    • 1
  • A. Nègre
    • 1
  • A. Maret
    • 1
  • J. Radom
    • 1
  • P. Rogalle
    • 1
  • Q. Q. Dang
    • 1
  • S. Gatt
    • 2
  • L. Douste-Blazy
    • 1
  1. 1.Faculté de MédecineLaboratoire de Biochimie et INSERM 101ToulouseFrance
  2. 2.Dpt of Membrane Biochemistry and NeurochemistryHebrew University-Hadassah School of MedicineJerusalemIsrael

Personalised recommendations