Advertisement

Genetic Heterogeneity of Gaucher Disease: Enzymatic and Immunologic Studies

  • Gregory A. Grabowski
  • Diane Fabbro
  • Tama Dinur
  • Karen Osiecki-Newman
  • Jack Goldblatt
  • Amy Feldman
  • Thomas Krulewski
  • Gunter Legler
  • Shimon Gatt
  • Robert J. Desnick
Part of the NATO ASI Series book series (NSSA, volume 116)

Abstract

Gaucher disease (GD), the most prevalent lysosomal storage disease (1), is an autosomal recessive disorder of glycosphingolipid metabolism, resulting from the reduced activity of the lysosomal enzyme, acid ß-glucosidase [ß-Glc; N-acyl-sphingosyl-0-β-D-glucoside: glucohydrolase (EC 3.2.1.45)] (2,3). The progressive accumulation of this enzyme’s major substrate, glucosyl ceramide (GC), within the lysosomes of the monocyte/macrophage system, leads to the diverse clinical manifestations of the disease (4,5). Three distinct phenotypes have been delineated based on the absence, or presence and severity of neuronopathic involvement (1). Type 1 GD (non-neuronopathic) is the most prevalent of the phenotypes and is characterized by remarkable variability in the age at clinical onset and degree of reticuloendothelial manifestations (6–8). Although occurring with highest frequency among Ashkenazi Jews (9), Type 1 GD has been described in patients from many different ethnic backgrounds (10–12). In contrast, Type 2 GD (acute neuronopathic) is a rare, panethnic, severe neurodegenerative disease which leads to death before two years of age (4). Type 3 GD, which occurs primarily in Sweden, is characterized by variable neuronopathic, visceral and boney involvement (13). Although originally described in Swedish individuals of Norrbottnian descent, other non-Swedish children with neuronopathic and severe reticuloendothelial manifestations have been classified as Type 3 GD (14,15). The Norrbottnian Type 3 GD patients presumably are homozygous for a single mutant allele at the ß-Glc structural gene locus, since all affected individuals were descended from a single couple who were married in the 1600s (13).

Keywords

Residual Activity Phosphatidyl Serine Gauche Disease Lysosomal Storage Disease Gauche Disease Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J. Desnick, S. Gatt, and G.A. Grabowski, “Gaucher Disease: A Century of Delineation and Research.” Alan R. Liss, Inc., New York (1982).Google Scholar
  2. 2.
    R.O. Brady, J.N. Kanfer, and D. Shapiro, Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease. Biochem. Biophys. Res. Commun. 18: 221–225 (1965).PubMedCrossRefGoogle Scholar
  3. 3.
    D.A. Patrick, A deficiency of glucocerebrosidase in Gaucher’s disease. Biochem. J. 97: 17C - 18C (1965).Google Scholar
  4. 4.
    D.S. Fredrickson, and H.R. Sloan, Glucosyl ceramide lipidoses: Gaucher’s disease. in: “The Metabolic Basis of Inherited Disease,” J.B. Stanbur3y J.B. Wyngaarden, and D.S. Fredrickson, eds., McGraw-Hill Book Co., New York, pp. 730–759 (1972).Google Scholar
  5. 5.
    J.L. Parkin, and R.D. Brunning, Pathology of the Gaucher cell. in: “Gaucher Disease: A Century of Delineation and Research,” R.J. Desnick, S. Gatt, and G.A. Grabowski, eds., Alan R. Liss, New York, pp. 151–176 (1982).Google Scholar
  6. 6.
    A.S. Medoff, and E.D. Bayrd, Gaucher disease in 28 cases: Haemalogic complications and effect of splenectomy. Ann. Int. Med. 40: 481–492 (1954).Google Scholar
  7. 7.
    L. Brinn, and S. Galbman, Gaucher’s disease without splenomegaly: Oldest patient on record, with review. NY State J. Med. 62: 2346–2354 (1962).Google Scholar
  8. 8.
    P. Hodson, J. Goldblatt, and P. Beighton, Non-neuronopathic Gaucher’s disease presenting in infancy. Arch. Dis. Child 54: 707–716 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Fried, Gaucher’s disease among the Jews of Israel. Bull. Res. Council Isr. 7B: 213–218 (1958).Google Scholar
  10. 10.
    P. Beighton, J. Goldblatt, and S. Sacks, Bone involvement in Gaucher disease. in: “Gaucher Disease: A Century of Delineation and Research,W.J. Desnick, S. Gatt, and G.A. Grabowski, eds., Alan R. Liss, Inc., New York, pp. 107–130 (1982).Google Scholar
  11. 11.
    J. Goldblatt, and P. Beighton, South African variants of Gaucher disease. in: “Gaucher Disease: A Century of Delineation and Research,w-Tt.J. Desnick, S. Gatt, and G.A. Grabowski, eds., Alan R. Liss, Inc., New York, pp. 95–106 (1982).Google Scholar
  12. 12.
    J.S. Rose, G.A. Grabowski, S. Barnett, and R.J. Desnick, Accelerated skeletal deterioration after splenectomy in Gaucher Type 1 disease. Am. J. Roentgenol. 139: 1202–1204 (1982).CrossRefGoogle Scholar
  13. 13.
    S. Dreborg, A. Erikson, and B. Hagberg, Gaucher’s disease: Norrbottnian type. Eur. J. Pediatr. 133: 107–118 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    O. Reiss, and K. Kato, Gaucher’s disease: A clinical study, with special reference to the roentgenography of bones. Am. J. Dis. Child 43: 365–398 (1932).Google Scholar
  15. 15.
    A.F.S. Maloney, and J.N. Cummings, A case of juvenile Gaucher’s disease with intraneuronal lipid storage. J. Neurol. Neurosurg. Psychiat. 23: 207–216 (1960).CrossRefGoogle Scholar
  16. 16.
    B. Shafit-Zagardo, E.A. Devine, M. Smith, F. Arrendondo-Vega, and R.J. Desnick, Assignment of the gene for acid ß-glucosidase to human chromosome 1. Am. J. Hum. Genet. 33: 564–575 (1981).PubMedGoogle Scholar
  17. 17.
    R.A. Barneveld, W. Keijzer, F.P.W. Tegelaers, E.I. Ginns, A. Geurtz van Kessel, R.O. Brady, J.A. Barranger, J.M. Tager, H. Galjaard, A. Westerveld, and A.J.J. Reuser, Assignment of the gene coding for human ß-glucocerebrosidase to the region q21 + q31 of chromosome 1 using monoclonal antibodies. Hum. Genet. 64: 227–231 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    B.M. Turner, and K. Hirschhorn, Properties of ß-glucosidase in cultured skin fibroblasts from controls and patients with Gaucher disease. Am. J. Hum. Genet. 30: 346–358 (1978).PubMedGoogle Scholar
  19. 19.
    R.H. Glew, L.B. Daniels, L.S. Clark, and S.W. Hoyer, Enzymic differentiation of neurologic and non neurologic forms of Gaucher’s disease. J. Neuropathol. Exp. Neurol. 416: 630–641 (1982).Google Scholar
  20. 20.
    E.I. Ginns, R.O. Brady, S. Pirruccello, C. Moore, S. Sorrell, F.S. Furbish, G.J. Murray, J. Tager, and J.A. Barranger, Mutations of glucocerebrosidase: Discrimination of neurologic and non-neurologic phenotypes in Gaucher disease. Proc. Natl. Acad. Sci. USA 79: 5607–5610 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    E.I. Ginns, F.P.W. Tegelaers, R.A. Barneveld, H. Galjaard, A.J.J. Reuser, R.O. Brady, J.M. Tager, and J.A. Barranger, Determination of Gaucher’s disease phenotypes with monoclonal antibody. Clin. Chim. Acta 131: 283–288 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    E. Beutler, W. Kuhl, and J. Sorge, Cross-reacting material in Gaucher disease fibroblasts. Proc. Natl. Acad. Sci. USA 81: 6506–6510 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    P.G. Pentchev, B. Neumeyer, L. Svennerholm, C.G. Groth, and R.O. Brady, Immunological and catalytic quantitation of splenic glucocerebrosidase from three clinical forms of Gaucher disease. Am. J. Hum. Genet. 35: 621–628 (1983).PubMedGoogle Scholar
  24. 24.
    S. Gatt, T. Dinur, and R.J. Desnick, Studies of human acid ß-glucosidase and the nature of the molecular defect in Type 1 Ashkenazi Gaucher disease. in: “Gaucher Disease: A Century of Delineation and Research,” R.J. Desnick, S. Gatt, and G.A. Grabowski, eds., Alan R. Liss, Inc., New York, pp. 315–331 (1982).Google Scholar
  25. 25.
    G.A. Grabowski, R.J. Desnick, J. Kruse, and S. Gatt, Human lysosomal ß-glucosidase: Kinetic characterization of the catalytic, aglycon and hydrophobic binding sites. Arch. Biochem. Biophys. 231: 144–157 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    G.A. Grabowski, and A. Dagan, Human lysosomal O-glucosidase: Purification by affinity chromatography. Anal. Biochem. 141: 267–279 (1984).PubMedCrossRefGoogle Scholar
  27. 27.
    N.S. Radin, Preparation of psychosines (1–0-Hexosyl Sphingosines) from cerebrosides. Lipids 9: 358–360 (1974).PubMedCrossRefGoogle Scholar
  28. 28.
    G.A. Grabowski, J. Goldblatt, T. Dinur, J. Kruse, L. Svennerholm, S. Gatt, and R.J. Desnick, Genetic heterogeneity in Gaucher disease: physicokinetic and immunologic studies of the residual enzyme in cultured fibroblasts from non-neuronopathic and neuronopathic patients. Am. J. Med. Genet. 21: 529–549 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    R.C. Gaver, and C.C. Sweeley, Chemistry and metabolism of sphingolipids: 3-Oxo-derivatives of N-acetyl-sphingosine and N-acetyl-dihydrosphingosine. J. Am. Oil Chem. Soc. 42:294–298 (1965).Google Scholar
  30. 30.
    T. Dinur, G.A. Grabowski, R.J. Desnick, and S. Gatt, Synthesis of a fluorescent derivative of glucosyl ceramide for the sensitive determination of glucocerebrosidase activity. Anal. Biochem. 136:223–234 (1984).Google Scholar
  31. 31.
    G. Legler, Glucosidases. in: “Methods in Enzymology,” W.B. Jakoby, and M. Wilchek, eds., Eademic Press, New York, pp. 368–381 (1977).Google Scholar
  32. 32.
    S.L. Berent, and N.S. Radin, Mechanism of activation of glucocerebrosidase by co-β-glucosidase. Biochim. Biophys. Acta 664:572–582 (1981).Google Scholar
  33. 33.
    D.A. Carson, R. Goldblum, and J.E. Seegmiller, Quantitative immunoassay of adenosine deaminase in combined immunodeficiency disease. J. Immunol. 118:270–273 (1977).Google Scholar
  34. 34.
    H. Towbin, T. Staehelin, and J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose streets: Procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354 (1979).Google Scholar
  35. 35.
    D.A. Johnson, J.W. Gautsch, J.R. Sportsman, and J.H. Elder, Improved technique utilizing nonfat dry milk for analysis of proteins and and nuclic acids transferred to nitrocellulose. Gene Anal. Tech. 1:3–8 (1984).Google Scholar
  36. 36.
    J.M.F.G. Aerts. W. Donker-Koopman, M.K. Van Der Vliet, L.M.V. Jonsson, E.I. Ginns, G.J. Murray, J.A. Barranger, J.M. Tager, and A.W. Schram, The occurrence of two immunologically distinguishable β-glucocerebrosidases in human spleen. Eur. J. Biochem. 150:565–574 (1985).Google Scholar
  37. 37.
    E. Conzelman, and K. Sandhoff, Partial enzyme deficiencies: Residual activities and the development of neurologic disorders. Dev. Neurosci. 6: 58–71 (1984).CrossRefGoogle Scholar
  38. 38.
    A.M. Vaccarro, M. Muscillo, and K. Suzuki, Characterization of human glucosylsphingosine glucosyl hydrolase and comparison with glucosylceramidase. Eur. J. Biochem. 146: 315–321 (1985).Google Scholar
  39. 39.
    J.S. Erickson, and N.S. Radin, N-hexyl-0-glucosylsphingosine, an inhibitor of glucosylcleramide β-glucosidase. J. Lipid Res. 14:133–137 (1973).Google Scholar
  40. 40.
    A. Basu, R.H. Glew, L.B. Daniels, and L.S. Clark, Activators of spleen glucocerebrosidase from controls and patients with various forms of Gaucher’s disease. J. Biol. Chem. 259: 1714–1719 (1984).Google Scholar
  41. 41.
    T. Dinur, K.M. Osiecki-Newman, D. Fabbro, G. Legier, S. Gatt, R.J. Desnick, and G.A. Grabowski, Human acid ß-glucosidase: Primary structure of the active site, in: “Enzymes of Lipid Metabolism,” this volume.Google Scholar
  42. 42.
    J. Sorge, T. Gelbart, C. West, B. Westwood, and E. Beutler, Heterogeneity in type I Gaucher disease demonstrated by restriction mapping of the gene. Proc. Natl. Acad. Sci. USA 82:5442–5445 (1985).Google Scholar
  43. 43.
    G.A. Grabowski, T. Dinur, K.M. Osiecki, J.R. Kruse, G. Legier, and S. Gatt, Gaucher disease types 1, 2 and 3: Differential mutations of the acid (i-glucosidase active site identified with conduritol B epoxide derivatives and sphingosine. Am. J. Hum. Genet. 37: 499–510, 1985.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Gregory A. Grabowski
    • 1
  • Diane Fabbro
    • 1
  • Tama Dinur
    • 1
    • 4
  • Karen Osiecki-Newman
    • 1
  • Jack Goldblatt
    • 2
  • Amy Feldman
    • 1
  • Thomas Krulewski
    • 1
  • Gunter Legler
    • 3
  • Shimon Gatt
    • 4
  • Robert J. Desnick
    • 1
  1. 1.Division of Medical Genetics, Department of PediatricsMount Sinai School of MedicineNew YorkUSA
  2. 2.MRC Unit for Inherited Skeletal DysplasiasCapetownSouth Africa
  3. 3.lnstitut Fur BiochemieUniversitat KolnKolnGermany
  4. 4.Department of Membrane Biochemistry and NeurochemistryHebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations