Advertisement

Nuclear Triiodothyronine Receptors and Mechanisms of Triiodothyronine and Insulin Action on the Synthesis of Cerebroside Sulfotransferase by Cultures of Cells Dissociated from Brains of Embryonic Mice

  • Véronique Ferret-Sena
  • Armando Sena
  • Gérard Rebel
  • Angel Pascual
  • Louis Freysz
  • Guy Vincendon
  • Louis Sarliève
Part of the NATO ASI Series book series (NSSA, volume 116)

Abstract

Many studies have shown that the CNS is markedly dependent on thyroid hormones for its overall growth and its biochemical and morphological development (1–6). Indeed, thyroid hormone deficiency at birth, if not recognized and corrected at an early stage, results in irreversible brain damage such as: impaired growth nerve cell processes resulting in a decrease in the number of neuronal contacts, increased cell death, reduced myelination and severe mental retardation (6–16). Significantly, these defects are amenable to hormone therapy only during an early critical age period (6). In contrast, in the hyperthyroid state, myelin synthesis commences and terminates earlier (17).

Keywords

Thyroid Hormone Embryonic Mouse Dwarf Mouse Embryonic Mouse Brain Snell Dwarf Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CNS

central nervous system

PAPS

3′-phosphoadenosine-5′-phosphosulfate

CST

cerebroside sulfotransferase

T3

L-3,5,3′-triiodothyronine

DIV

days in vitro

DIC

days in culture

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Legrand, Hormones thyroidiennes et maturation du système nerveux, J. Physiol. Paris 78:603–652 (1982–1983).Google Scholar
  2. 2.
    J. Clos, F. Crepel, C. Legrand, J. Legrand, A. Rabié and E. Vigouroux, Thyroid physiology during the postnatal period in the rat: a study of the development of thyroid function and of the morphogenetic effects of thyroxine with special reference to cerebellar maturation, Gen. Compar. Endocrin. 23: 178–192 (1974).CrossRefGoogle Scholar
  3. 3.
    J. Nunez, A. Fellous, J. Francon and A.M. Lennon, Le contrôle thyroidien du développement cérébral, La Recherche 8: 580–582 (1977).Google Scholar
  4. 4.
    A. Ruiz-Marcos, F. Sanchez-Toscano, M.J. Obregon, F. Escobar del Rey and G. Morreale de Escobar, Thyroxine treatment and recovery of hypothyroidism-induced pyramidal cell damage, Brain Res. 239: 559–574 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Puymirat, A. Faivre-Bauman, A. Barret, C. Loudes and A. TixierVidal, Does triiodothyronine influence the morphogenesis of fetal mouse mesencephalic dopaminergic neurons cultured in chemically defined medium? Dev. Brain Res. 23: 315–317 (1985).CrossRefGoogle Scholar
  6. 6.
    J.B. Stanbury and J.E. Dumont, Familial goiter and related disorders, in: “The Metabolic Basis of Inherited Disease”, J.B. Stanbury, J.B. Wyngaarden, D.S. Fredrickson, J.L. Goldstein and M.S. Brown, eds., McGraw Hill Inc., New York, pp. 231–269 (1983).Google Scholar
  7. 7.
    J. Francon, A. Fellous, A.M. Lennon and J. Nunez,Is thyroxine a regulatory signal for neurotubule assembly during brain development? Nature (Lond.) 266: 188–190 (1977).CrossRefGoogle Scholar
  8. 8.
    A. Mareck, A. Fellous, J. Francon and J. Nunez, Changes in composition and activity of microtubule-associated proteins during brain development, Nature (Lond) 284: 353–355 (1980).CrossRefGoogle Scholar
  9. 9.
    C. Faivre, C. Legrand and A. Rabié, Effects of thyroid deficiency and corrective effects of thyroxine on microtubules and mitochondria in cerebellar Purkinje cell dendrites of developing rats, Dev. Brain Res. 8: 21–30 (1983).CrossRefGoogle Scholar
  10. 10.
    R. Balazs, V. Gallo, C.K. Atterwill, A.E. Kingsbury and O.S. Jorgensen, Does thyroid hormone influence the maturation of cerebellar granule neurones? Biomed. Biochim. Acta 10: 1469–1482 (1985).Google Scholar
  11. 11.
    R. Balazs, B.W.L. Brooksbank, A.N. Davison, J.T. Eayrs and D.A. Wilson, The effect of neonatal thyroidectomy on myelination in the rat brain, Brain Res. 15: 219–232 (1969).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Balazs, B.W.L. Brooksbank, A.J. Patel, A.L. Johnson and D.A. Wilson, Incorporation of [35S]sulfate into brain constituents during development and the effects of thyroid hormone on myelination, Brain Res 30: 273–293 (1971).PubMedCrossRefGoogle Scholar
  13. 13.
    J.M. Matthieu, P.J. Reier and J.A. Sawchak, Proteins of rat brain myelin in neonatal hypothyroidism, Brain Res. 84: 443–451 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    T.J. Flynn, D.S. Deshmukh and R.A. Pieringer, Effects of altered thyroid function on galactosyl diacylglycerol metabolism in myelinating rat brain, J. Biol. Chem. 252: 5864–5870 (1977).PubMedGoogle Scholar
  15. 15.
    R. Saxod and J. Bouvet, Effets de la déficience thyroîdienne sur le développement des nerfs cutanés du poulet, C.R. Acad. Sci. Paris 294: 19–24 (1982).Google Scholar
  16. 16.
    J. Bouvet and R. Saxod, Analyse ultrastructurale quantitative du développement des nerfs cutanés chez le poulet hypothyroidien, Arch. Anat. Microsc. 73: 27–43 (1984).Google Scholar
  17. 17.
    S.N. Walters and P. Morell, Effects of altered thyroid states on myelinogenesis, J. Neurochem. 36: 1792–1801 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    N.M. Neskovic, L.L. Sarliève and P. Mandel, Alteration of the glycolipid biosynthesis in the hypopituitary dwarf mouse, Brain Res. 184: 523–528 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    L.L. Sarliève, N.M. Neskovic, G. Rebel and P. Mandel, Some properties of brain PAPS-cerebroside sulphotransferase in Jimpy and Quaking mice, Neurobiology 2: 70–82 (1972).PubMedGoogle Scholar
  20. 20.
    G.I. Tennekoon, S.R. Cohen, D.L. Price and G.M. McKhann, Myelinogenesis in optic nerve: a morphological, autoradiographic, and biochemical analysis, J. Cell Biol. 72: 604–616 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    J.A. Benjamins, M. Guarnieri, K. Miller, M. Sonneborn and G.M. McKhann, Sulphatide synthesis in isolated oligodendroglial and neuronal cells, J. Neurochem. 23: 751–757 (1974).PubMedCrossRefGoogle Scholar
  22. 22.
    L.L. Sarliève, R. Bouchon, C. Koehl and N.M. Neskovic, Cerebroside and sulfatide biosynthesis in the brain of Snell Dwarf mouse: effects of thyroxine and growth hormone in the early postnatal period, J. Neurochem. 40: 1058–1062 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    G.A. Bray and D.A. York, Hypothalamic and genetic obesity in experimental animals. An autonomic and endocrine hypothesis, Physiol. Rev. 59: 719–809 (1979).PubMedGoogle Scholar
  24. 24.
    A. Sena, L.L. Sarliève and G. Rebel, Brain myelin of genetically obese mice, J. Neurol. Sci. 68: 233–244 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    L.L. Sarliève, J.P. Delaunoy, A. Dierich, A. Ebel, M. Fabre, P. Mandel, G. Rebel, G. Vincendon, M. Wintzerith and A.N.K. Yusuf i, Investigations on myelination in vitro. III. Ultrastructural, biochemical, and immunohistochemical studies in cultures of dissociated brain cells from embryonic mice. J. Neurosci. Res. 6: 659–683 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Fabre, O.K. Langley, L. Bologa, J.P. Delaunoy, A. Lowenthal, V. Ferret-Sena, G. Vincendon and L.L. Sarliève, Cellular development and myelin production in primary cultures of embryonic mouse brain, Dev. Neurosci. 7: 323–339 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    L.L. Sarliève, M. Fabre, J. Susz and J.M. Matthieu, Investigations of myelination in vitro: IV. “Myelin-like” or premyelin structures in cultures of dissociated brain cells from 14–15 day-old embryonic mice, J. Neurosci. Res. 10:191–210 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    J. Weeke and H. Orskov, Synthesis of I monolabelled 3,5,3’-tri- iodothyronine and thyroxine of maximum specific activity for radioimmunoassay, Scand. J. Clin. Lab. Invest. 32: 357–360 (1973).PubMedCrossRefGoogle Scholar
  29. 29.
    L. Freysz, A.A. Farooqui, Z. Adamczewska-Goncerzewicz and P. Mandel, Lysosomal hydrolases in neuronal, astroglial, and oligodendroglial enriched fractions of rabbit and beef brain, J. Lipid. Res. 20: 503–508 (1979).PubMedGoogle Scholar
  30. 30.
    L.L. Sarliève, G. Subba Rao, G.LeM. Campbell and R.A. Pieringer, Investigations on myelination in vitro: biochemical and morphological changes in cultures of dissociated brain cells from embryonic mice, Brain Res. 189: 79–90 (1980).PubMedCrossRefGoogle Scholar
  31. 31.
    H.H. Samuels, and J.S. Tsai, Thyroid hormone action. Demonstration of similar receptors in isolated nuclei of rat liver and cultured GH1 cells, J. Clin. Invest. 53: 656–659 (1984).CrossRefGoogle Scholar
  32. 32.
    H.H. Samuels, J.S. Tsai and R. Cintron, Thyroid hormone action: a cell culture system responsive to physiological concentrations of thyroid hormones, Science 181: 1253–1256 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    G. Scatchard, The attraction of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51: 660–672 (1949).CrossRefGoogle Scholar
  34. 34.
    N.M. Neskovic, G. Rebel, S. Harth. and P. Mandel, Biosynthesis of galactocerebrosides and glucocerebrosides in glial cell lines, J. Neurochem. 37: 1363–1370 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    K. Burton, A study of the conditions and mechanisms of the diphenylamine reactions for the colorimetric estimation of deoxyribonucleic acid, Biochem. J. 62: 315–323 (1956).PubMedGoogle Scholar
  36. 36.
    C. Labarca and K. Paigen, A simple, rapid and sensitive DNA assay procedure, Anal. Biochem. 102: 344–352 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265–275 (1951).PubMedGoogle Scholar
  38. 38.
    M.K. Patterson, Measurement of growth and viability of cells in culture, Methods in Enzymol. 58: 141–152 (1979).CrossRefGoogle Scholar
  39. 39.
    L.L. Sarliève, F.V,, DeFeudis, L. Ossola, V. Varga and P. Mandel, Development of [H]muscimol binding to subcellular particles of a culture of mouse brain, Neurochem. Res. 5: 1279–1290 (1980).PubMedCrossRefGoogle Scholar
  40. 40.
    G. Almazan, P. Honegger and J.M. Matthieu, Triiodothyronine stimulation of oligodendroglial differentiation and myelination. A developmental study, Dev. Neurosci. 7: 45–54 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    S.G. Amur, G. Shanker and R.A. Pieringer, Regulation of myelin basic protein (arginine) methyltransferase by thyroid hormone in myelinogenic cultures of cells dissociated from embryonic mouse brain, J. Neurochem. 43: 494–498 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    G. Shanker and R.A. Pieringer, Effect of thyroid hormone on the synthesis of sialosyl galactosylceramide (GM4) in myelinogenic cultures of cells dissociated from embryonic mouse brain, Dev. Brain Res. 6: 169–174 (1983).CrossRefGoogle Scholar
  43. 43.
    D.P. Weingarten, S. Kumar, J. Bressler and J. De Vellis, Regulation of differentiated properties of oligodendrocytes, in: “Advances in Neurochemistry: Oligodendroglia”, W.T. Norton, ed., Plenum Press, New York, Vol. 5, pp. 299–338 (1984).Google Scholar
  44. 44.
    F.J.W. Koper, Oligodendrocytes and myelin lipid synthesis, Ph.D. Thesis, State University of Utrecht, The Netherlands, 140 pp. (1985).Google Scholar
  45. 45.
    P. Honegger and B. Guentert-Lauber, Epidermal growth factor (EGF) stimulation of cultured brain cells. I. Enhancement of the developmental increase in glial enzymatic activity, Dev. Brain Res. 11: 245–251 (1983).CrossRefGoogle Scholar
  46. 46.
    F.A. McMorris, Cyclic AMP induction of the myelin enzyme 2’,3’-cyclic nucleotide 3’-phosphohydrolase in rat oligodendrocytes, J. Neurochem. 41: 506–515 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    G.A. Roth, V.H. Jorgensen and M.B. Bornstein, Effect of insulin, proinsulin and pancreatic extract on myelination and remyelination in organotypic nerve tissue in culture, J. Neurol. Sci. 71: 339–350 (1985).PubMedCrossRefGoogle Scholar
  48. 48.
    F.A. McMorris, T.M. Smith, S. DeSalvo and R.W. Furlanetto, Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development, Proc. Natl. Acad. Sci. USA 83: 822–826 (1986).PubMedCrossRefGoogle Scholar
  49. 49.
    N.R. Bhat, G. Shanker and R.A. Pieringer, Investigations on my- elination in vitro: regulation of 2’,3’-cyclic nucleotide 3’phosphohydrolase by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Neurochem. 37: 695–701 (1981).PubMedCrossRefGoogle Scholar
  50. 50.
    N.R. Bhat, L.L. Sarliève, G. Subba Rao and R.A. Pieringer, Investigations on myelination in vitro. Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 254: 9342–9344 (1979).PubMedGoogle Scholar
  51. 51.
    N.R. Bhat, G. Subba Rao and R.A. Pieringer, Investigations on myelination in vitro. Regulation of sulfolipid synthesis by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 256: 1167–1171 (1981).PubMedGoogle Scholar
  52. 52.
    A. Pascual, A. Aranda, V. Ferret-Sena, M.M. Gabellec, G. Rebel and L.L. Sarliève, Triiodothyronine receptors in developing mouse neuronal and glial cell cultures and in chick cultured neurones and astrocytes, Dev. Neurosci. in press (1986).Google Scholar
  53. 53.
    J.M. Matthieu, U. Schneider and N. Herschkowitz, In vitro synthesis of sulfatide in a myelin deficient mutant: the Jimpy mouse, Brain Res. 42:433–439 (1972).PubMedCrossRefGoogle Scholar
  54. 54.
    N.H. Sternberger, Patterns of oligodendrocyte function seen by immunocytochemistry, in: “Advances in Neurochemistry: Oligoden- droglia”, W.T. Norton, ed., Plenum Press, New York, Vol. 5, pp. 125–173, (1984).Google Scholar
  55. 55.
    A. Guerci, M. Monge, A. Baron-Van Evercooren, C. Lubetzki, S. Dancea, J.M. Boutry, C. Goujet-Zalc and B. Zalc, Schwann cell marker defined by a monoclonal antibody (224–58) with species cross-reactivity. I. Cellular localization, J. Neurochem. 46: 425–434 (1986).PubMedCrossRefGoogle Scholar
  56. 56.
    C. Goujet-Zalc, A. Guerci, G. Dubois and B. Zalc, Schwann cell marker defined by a monoclonal antibody (224–58) with species cross-reactivity. IL. Molecular characterization of the Epitope. J. Neurochem. 46: 435–439 (1986).PubMedCrossRefGoogle Scholar
  57. 57.
    C. Layet, P.P. Le Bouteiller, D. Olive, Z. Mishal, D. Cailloi, F.M. Kourilsky, B.R. Jordan and F.A. Lemonnier, Absence of cell surface fixation of a monoclonal antibody detectable by conventional immunoassays does not exclude expression of and interaction with the corresponding antigenic determinant, Eur. J. Immunol. 14: 99–102 (1984).PubMedCrossRefGoogle Scholar
  58. 58.
    G.I. Tennekoon, J. Frangia, S. Aitchison and D.L. Price, Cerebroside sulfotransferase: preparation of antibody and localization of antigen in kidney, J. Cell Biol. 91: 332–339 (1981).PubMedCrossRefGoogle Scholar
  59. 59.
    J.J. Helwig, J. Pieringer, L.L. Sarliève, A.A. Farooqui, G. Rebel, P. Mandel and R.A. Pieringer, Cellular localization of Na+ K+-dependent ATPase and of the enzymes of sulpholipid metabolism in rabbit kidney, in: “Advances in experimental Medicine and Biology: Enzymes of Lipid Metabolism”, S. Gatt, L. Freysz and P. Mandel, eds., Plenum Press, New York, Vol. 101, pp. 641–648 (1978).Google Scholar
  60. 60.
    B. Zalc, J.J. Helwig, M.S. Ghandour, and L. Sarliève, Sulfatide in the kidney: how is this lipid involved in sodium chloride transport? FEBS Lett. 92: 92–96 (1978).PubMedCrossRefGoogle Scholar
  61. 61.
    K. Tadano and I. Ishizuka, Enzymatic sulfation of galactosyl-and lactosylceramides in cell lines derived from renal tubules, Biochim. Biophys. Acta 575: 421–430 (1979).PubMedCrossRefGoogle Scholar
  62. 62.
    D.A. Herzlinger, T.G. Easton and G.K. Ojakian, The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule, J. Cell Biol. 93: 269–277 (1982).PubMedCrossRefGoogle Scholar
  63. 63.
    B. Dozin and P. De Nayer, Triiodothyronine receptors in adult rat brain: topographical distribution and effect of hypothyroidism, Neuroendocrinology 39: 261–266 (1984).PubMedCrossRefGoogle Scholar
  64. 64.
    S. Hamada and Y. Yoshimasa, Increases in brain nuclear triiodothyronine receptors associated with increased triiodothyronine in hyperthyroid and hypothyroid rats, Endocrinology 112: 207–211 (1983).PubMedCrossRefGoogle Scholar
  65. 65.
    K. Ishiguro, Y. Suzuki and T. Sato, Effect of neonatal hypothyroidism on maturation of nuclear triiodothyronine (T3) receptors in developing rat brain, Acta Endocrinol. 95: 495–499 (1980).PubMedGoogle Scholar
  66. 66.
    J.H. Oppenheimer, H.L. Schwartz and M.I. Surks, Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen and testis, Endocrinology 95: 897–903 (1974).PubMedCrossRefGoogle Scholar
  67. 67.
    C.L. Thrall and T. Yanagihara, Alterations of nuclear thyroid horone receptors in cerebral cortex in vivo, J. Neurochem. 38: 669–674 (1982).PubMedCrossRefGoogle Scholar
  68. 68.
    T. Valcana and P.S. Timiras, Nuclear triiodothyronine receptors in the developing brain, Mol. Cell. Endocrinol. 11: 31–41 (1978).PubMedCrossRefGoogle Scholar
  69. 69.
    M.A. Haidar, S. Dube and P.K. Sarkar, Thyroid hormone receptors of developing chick brain are predominantly in the neurons, Biochem. Biophys. Res. Commun. 112: 221–227 (1983).CrossRefGoogle Scholar
  70. 70.
    J.M. Kolodny, P.R. Larsen and J.E. Silva, In vitro 3,5,3’-triiodothyronine binding to rat cerebrocortical neuronal and glial nuclei suggests the presence of binding sites unavailable in vivo, Endocrinology 116:2019–2028 (1985).PubMedCrossRefGoogle Scholar
  71. 71.
    J. Ruel, R. Faure and J.H. Dussault, Regional distribution of nuclear T3 receptors in rat brain and evidence for preferential localization in neurons, J. Endocrinol. Invest. 8: 343–348 (1985).PubMedGoogle Scholar
  72. 72.
    G. Shanker, N.R. Bhat and R.A. Pieringer, Investigations on myelination in vitro: thyroid hormone receptors in cultures of cells dissociated from embryonic mouse brain, Biosci. Rep. 1: 289–297 (1981).PubMedCrossRefGoogle Scholar
  73. 73.
    H.L. Schwartz and J.H. Oppenheimer, Ontogenesis of 3,5,3’-triiodothyronine receptors in neonatal rat brain: dissociation between receptor concentration and stimulation of oxygen consumption by 3,5,3’-triiodothyronine, Endocrinology 103: 943–948 (1978).PubMedCrossRefGoogle Scholar
  74. 74.
    A.M. Lennon, J. Osty and J. Nunez, Cytosolic thyroxine-binding protein and brain development, Mol. Cell Endocrinol. 18: 201–214 (1980).PubMedCrossRefGoogle Scholar
  75. 75.
    F. Goglia, G. Gallo, S. Palmero, A. Voci and E. Fugassa, Triiodothyronine receptor sites in serum-free cultured hepatocytes from adult rat liver, Cell Biochem. Funct., 3: 91–94 (1985).PubMedCrossRefGoogle Scholar
  76. 76.
    E. O’Keefe and P. Cuatrecasas, Cholera toxin and membrane gan- gliosides: binding and adenylate cyclase activation in normal and transformed cells, J. Memb. Biol. 42: 61–79 (1978).CrossRefGoogle Scholar
  77. 77.
    J. Francon, J. Osty, F. Chantoux and A.M. Lennon, Cellular location of cytosolic triiodothyronine binding protein in primary cultures of fetal rat brain, Mol. Cell. Endocrinol. 39: 197–207 (1985).PubMedCrossRefGoogle Scholar
  78. 78.
    J. Gharbi-Chihi and J. Torresani, Thyroid hormone binding to plasma membrane preparation: studies in different thyroid states and tissues, J. Endocrinol. Invest. 4: 177–183 (1981).PubMedGoogle Scholar
  79. 79.
    S.Y. Cheng, Structural similarities between the plasma membrane binding sites for L-thyroxine and 3,3’,5-triiodo-L-thyronine in cultured cells, J. Recept. Res. 5: 1–26 (1985).PubMedGoogle Scholar
  80. 80.
    H.R. Herschman, Polypeptide growth factors and the CNS, Tr. Neurosci. 9: 53–57 (1986).CrossRefGoogle Scholar
  81. 81.
    G. Ailhaud, EZ-Z. Amri, P. Djian, C. Forest, P. Grimaldi, R. Negrel and C. Vannier, Insulin effects on the proliferation and the differentiation of OB17 cells into adipocyte-like cells, Hormones and Cell Regulation 8: 53–66 (1984).Google Scholar
  82. 82.
    N.R. Bhat, G. Shanker and R.A. Pieringer, Cell proliferation in growing cultures of dissociated embryonic mouse brain: macromolecule and ornithine decarboxylase synthesis and regulation by hormones and drugs, J. Neurosci. Res. 10:221–230 ( (1983).Google Scholar
  83. 83.
    J. Nunez, Microtubules and brain development: the effects of thyroid hormones, Neurochem. Int. 7: 959–968 (1985).PubMedCrossRefGoogle Scholar
  84. 84.
    D.S. Straus, Growth-stimulatory actions of insulin in vitro and in vivo, Endocrine Rev. 5: 356–369 (1984).CrossRefGoogle Scholar
  85. 85.
    F.B. Jungalwala, O. Koul, A. Stoolmiller and V.S. Sapirstein, Regulation of cerebroside and sulfatide metabolism in glia cells, J. Neurochem., 45: 191–198 (1985).PubMedCrossRefGoogle Scholar
  86. 86.
    F. Montiel, L. Sarliève, A. Pascual and A. Aranda, Multihormonal control of proliferation and cytosolic glycerol phosphate dehydrogenase, lactate dehydrogenase and malic enzyme in glial cells in culture, Neurochem. Int. in press (1986).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Véronique Ferret-Sena
    • 1
  • Armando Sena
    • 1
  • Gérard Rebel
    • 2
  • Angel Pascual
    • 3
  • Louis Freysz
    • 2
  • Guy Vincendon
    • 2
  • Louis Sarliève
    • 2
  1. 1.Departamento de Bioquimica, Faculdade de Ciencias MédicasUniversidade NovaLisboa CodexPortugal
  2. 2.Centre de Neurochimie du CNRS & U.44 de l’INSERMStrasbourg CedexFrance
  3. 3.Departamento de Endocrinologia Experimental, Instituto Investigaciones Biomedicas, C.S.I.C.Facultad de Medicina de la Universidad Autonoma de MadridMadridSpain

Personalised recommendations