Skip to main content

Nuclear Triiodothyronine Receptors and Mechanisms of Triiodothyronine and Insulin Action on the Synthesis of Cerebroside Sulfotransferase by Cultures of Cells Dissociated from Brains of Embryonic Mice

  • Chapter
Enzymes of Lipid Metabolism II

Part of the book series: NATO ASI Series ((NSSA,volume 116))

Abstract

Many studies have shown that the CNS is markedly dependent on thyroid hormones for its overall growth and its biochemical and morphological development (1–6). Indeed, thyroid hormone deficiency at birth, if not recognized and corrected at an early stage, results in irreversible brain damage such as: impaired growth nerve cell processes resulting in a decrease in the number of neuronal contacts, increased cell death, reduced myelination and severe mental retardation (6–16). Significantly, these defects are amenable to hormone therapy only during an early critical age period (6). In contrast, in the hyperthyroid state, myelin synthesis commences and terminates earlier (17).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CNS:

central nervous system

PAPS:

3′-phosphoadenosine-5′-phosphosulfate

CST:

cerebroside sulfotransferase

T3:

L-3,5,3′-triiodothyronine

DIV:

days in vitro

DIC:

days in culture

References

  1. J. Legrand, Hormones thyroidiennes et maturation du système nerveux, J. Physiol. Paris 78:603–652 (1982–1983).

    Google Scholar 

  2. J. Clos, F. Crepel, C. Legrand, J. Legrand, A. Rabié and E. Vigouroux, Thyroid physiology during the postnatal period in the rat: a study of the development of thyroid function and of the morphogenetic effects of thyroxine with special reference to cerebellar maturation, Gen. Compar. Endocrin. 23: 178–192 (1974).

    Article  CAS  Google Scholar 

  3. J. Nunez, A. Fellous, J. Francon and A.M. Lennon, Le contrôle thyroidien du développement cérébral, La Recherche 8: 580–582 (1977).

    Google Scholar 

  4. A. Ruiz-Marcos, F. Sanchez-Toscano, M.J. Obregon, F. Escobar del Rey and G. Morreale de Escobar, Thyroxine treatment and recovery of hypothyroidism-induced pyramidal cell damage, Brain Res. 239: 559–574 (1982).

    Article  PubMed  CAS  Google Scholar 

  5. J. Puymirat, A. Faivre-Bauman, A. Barret, C. Loudes and A. TixierVidal, Does triiodothyronine influence the morphogenesis of fetal mouse mesencephalic dopaminergic neurons cultured in chemically defined medium? Dev. Brain Res. 23: 315–317 (1985).

    Article  CAS  Google Scholar 

  6. J.B. Stanbury and J.E. Dumont, Familial goiter and related disorders, in: “The Metabolic Basis of Inherited Disease”, J.B. Stanbury, J.B. Wyngaarden, D.S. Fredrickson, J.L. Goldstein and M.S. Brown, eds., McGraw Hill Inc., New York, pp. 231–269 (1983).

    Google Scholar 

  7. J. Francon, A. Fellous, A.M. Lennon and J. Nunez,Is thyroxine a regulatory signal for neurotubule assembly during brain development? Nature (Lond.) 266: 188–190 (1977).

    Article  CAS  Google Scholar 

  8. A. Mareck, A. Fellous, J. Francon and J. Nunez, Changes in composition and activity of microtubule-associated proteins during brain development, Nature (Lond) 284: 353–355 (1980).

    Article  CAS  Google Scholar 

  9. C. Faivre, C. Legrand and A. Rabié, Effects of thyroid deficiency and corrective effects of thyroxine on microtubules and mitochondria in cerebellar Purkinje cell dendrites of developing rats, Dev. Brain Res. 8: 21–30 (1983).

    Article  CAS  Google Scholar 

  10. R. Balazs, V. Gallo, C.K. Atterwill, A.E. Kingsbury and O.S. Jorgensen, Does thyroid hormone influence the maturation of cerebellar granule neurones? Biomed. Biochim. Acta 10: 1469–1482 (1985).

    Google Scholar 

  11. R. Balazs, B.W.L. Brooksbank, A.N. Davison, J.T. Eayrs and D.A. Wilson, The effect of neonatal thyroidectomy on myelination in the rat brain, Brain Res. 15: 219–232 (1969).

    Article  PubMed  CAS  Google Scholar 

  12. R. Balazs, B.W.L. Brooksbank, A.J. Patel, A.L. Johnson and D.A. Wilson, Incorporation of [35S]sulfate into brain constituents during development and the effects of thyroid hormone on myelination, Brain Res 30: 273–293 (1971).

    Article  PubMed  CAS  Google Scholar 

  13. J.M. Matthieu, P.J. Reier and J.A. Sawchak, Proteins of rat brain myelin in neonatal hypothyroidism, Brain Res. 84: 443–451 (1975).

    Article  PubMed  CAS  Google Scholar 

  14. T.J. Flynn, D.S. Deshmukh and R.A. Pieringer, Effects of altered thyroid function on galactosyl diacylglycerol metabolism in myelinating rat brain, J. Biol. Chem. 252: 5864–5870 (1977).

    PubMed  CAS  Google Scholar 

  15. R. Saxod and J. Bouvet, Effets de la déficience thyroîdienne sur le développement des nerfs cutanés du poulet, C.R. Acad. Sci. Paris 294: 19–24 (1982).

    CAS  Google Scholar 

  16. J. Bouvet and R. Saxod, Analyse ultrastructurale quantitative du développement des nerfs cutanés chez le poulet hypothyroidien, Arch. Anat. Microsc. 73: 27–43 (1984).

    Google Scholar 

  17. S.N. Walters and P. Morell, Effects of altered thyroid states on myelinogenesis, J. Neurochem. 36: 1792–1801 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. N.M. Neskovic, L.L. Sarliève and P. Mandel, Alteration of the glycolipid biosynthesis in the hypopituitary dwarf mouse, Brain Res. 184: 523–528 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. L.L. Sarliève, N.M. Neskovic, G. Rebel and P. Mandel, Some properties of brain PAPS-cerebroside sulphotransferase in Jimpy and Quaking mice, Neurobiology 2: 70–82 (1972).

    PubMed  Google Scholar 

  20. G.I. Tennekoon, S.R. Cohen, D.L. Price and G.M. McKhann, Myelinogenesis in optic nerve: a morphological, autoradiographic, and biochemical analysis, J. Cell Biol. 72: 604–616 (1977).

    Article  PubMed  CAS  Google Scholar 

  21. J.A. Benjamins, M. Guarnieri, K. Miller, M. Sonneborn and G.M. McKhann, Sulphatide synthesis in isolated oligodendroglial and neuronal cells, J. Neurochem. 23: 751–757 (1974).

    Article  PubMed  CAS  Google Scholar 

  22. L.L. Sarliève, R. Bouchon, C. Koehl and N.M. Neskovic, Cerebroside and sulfatide biosynthesis in the brain of Snell Dwarf mouse: effects of thyroxine and growth hormone in the early postnatal period, J. Neurochem. 40: 1058–1062 (1983).

    Article  PubMed  Google Scholar 

  23. G.A. Bray and D.A. York, Hypothalamic and genetic obesity in experimental animals. An autonomic and endocrine hypothesis, Physiol. Rev. 59: 719–809 (1979).

    PubMed  CAS  Google Scholar 

  24. A. Sena, L.L. Sarliève and G. Rebel, Brain myelin of genetically obese mice, J. Neurol. Sci. 68: 233–244 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. L.L. Sarliève, J.P. Delaunoy, A. Dierich, A. Ebel, M. Fabre, P. Mandel, G. Rebel, G. Vincendon, M. Wintzerith and A.N.K. Yusuf i, Investigations on myelination in vitro. III. Ultrastructural, biochemical, and immunohistochemical studies in cultures of dissociated brain cells from embryonic mice. J. Neurosci. Res. 6: 659–683 (1981).

    Article  PubMed  Google Scholar 

  26. M. Fabre, O.K. Langley, L. Bologa, J.P. Delaunoy, A. Lowenthal, V. Ferret-Sena, G. Vincendon and L.L. Sarliève, Cellular development and myelin production in primary cultures of embryonic mouse brain, Dev. Neurosci. 7: 323–339 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. L.L. Sarliève, M. Fabre, J. Susz and J.M. Matthieu, Investigations of myelination in vitro: IV. “Myelin-like” or premyelin structures in cultures of dissociated brain cells from 14–15 day-old embryonic mice, J. Neurosci. Res. 10:191–210 (1983).

    Article  PubMed  Google Scholar 

  28. J. Weeke and H. Orskov, Synthesis of I monolabelled 3,5,3’-tri- iodothyronine and thyroxine of maximum specific activity for radioimmunoassay, Scand. J. Clin. Lab. Invest. 32: 357–360 (1973).

    Article  PubMed  CAS  Google Scholar 

  29. L. Freysz, A.A. Farooqui, Z. Adamczewska-Goncerzewicz and P. Mandel, Lysosomal hydrolases in neuronal, astroglial, and oligodendroglial enriched fractions of rabbit and beef brain, J. Lipid. Res. 20: 503–508 (1979).

    PubMed  CAS  Google Scholar 

  30. L.L. Sarliève, G. Subba Rao, G.LeM. Campbell and R.A. Pieringer, Investigations on myelination in vitro: biochemical and morphological changes in cultures of dissociated brain cells from embryonic mice, Brain Res. 189: 79–90 (1980).

    Article  PubMed  Google Scholar 

  31. H.H. Samuels, and J.S. Tsai, Thyroid hormone action. Demonstration of similar receptors in isolated nuclei of rat liver and cultured GH1 cells, J. Clin. Invest. 53: 656–659 (1984).

    Article  Google Scholar 

  32. H.H. Samuels, J.S. Tsai and R. Cintron, Thyroid hormone action: a cell culture system responsive to physiological concentrations of thyroid hormones, Science 181: 1253–1256 (1973).

    Article  PubMed  CAS  Google Scholar 

  33. G. Scatchard, The attraction of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 51: 660–672 (1949).

    Article  CAS  Google Scholar 

  34. N.M. Neskovic, G. Rebel, S. Harth. and P. Mandel, Biosynthesis of galactocerebrosides and glucocerebrosides in glial cell lines, J. Neurochem. 37: 1363–1370 (1981).

    Article  PubMed  CAS  Google Scholar 

  35. K. Burton, A study of the conditions and mechanisms of the diphenylamine reactions for the colorimetric estimation of deoxyribonucleic acid, Biochem. J. 62: 315–323 (1956).

    PubMed  CAS  Google Scholar 

  36. C. Labarca and K. Paigen, A simple, rapid and sensitive DNA assay procedure, Anal. Biochem. 102: 344–352 (1980).

    Article  PubMed  CAS  Google Scholar 

  37. O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265–275 (1951).

    PubMed  CAS  Google Scholar 

  38. M.K. Patterson, Measurement of growth and viability of cells in culture, Methods in Enzymol. 58: 141–152 (1979).

    Article  Google Scholar 

  39. L.L. Sarliève, F.V,, DeFeudis, L. Ossola, V. Varga and P. Mandel, Development of [H]muscimol binding to subcellular particles of a culture of mouse brain, Neurochem. Res. 5: 1279–1290 (1980).

    Article  PubMed  Google Scholar 

  40. G. Almazan, P. Honegger and J.M. Matthieu, Triiodothyronine stimulation of oligodendroglial differentiation and myelination. A developmental study, Dev. Neurosci. 7: 45–54 (1985).

    Article  PubMed  CAS  Google Scholar 

  41. S.G. Amur, G. Shanker and R.A. Pieringer, Regulation of myelin basic protein (arginine) methyltransferase by thyroid hormone in myelinogenic cultures of cells dissociated from embryonic mouse brain, J. Neurochem. 43: 494–498 (1984).

    Article  PubMed  CAS  Google Scholar 

  42. G. Shanker and R.A. Pieringer, Effect of thyroid hormone on the synthesis of sialosyl galactosylceramide (GM4) in myelinogenic cultures of cells dissociated from embryonic mouse brain, Dev. Brain Res. 6: 169–174 (1983).

    Article  CAS  Google Scholar 

  43. D.P. Weingarten, S. Kumar, J. Bressler and J. De Vellis, Regulation of differentiated properties of oligodendrocytes, in: “Advances in Neurochemistry: Oligodendroglia”, W.T. Norton, ed., Plenum Press, New York, Vol. 5, pp. 299–338 (1984).

    Google Scholar 

  44. F.J.W. Koper, Oligodendrocytes and myelin lipid synthesis, Ph.D. Thesis, State University of Utrecht, The Netherlands, 140 pp. (1985).

    Google Scholar 

  45. P. Honegger and B. Guentert-Lauber, Epidermal growth factor (EGF) stimulation of cultured brain cells. I. Enhancement of the developmental increase in glial enzymatic activity, Dev. Brain Res. 11: 245–251 (1983).

    Article  CAS  Google Scholar 

  46. F.A. McMorris, Cyclic AMP induction of the myelin enzyme 2’,3’-cyclic nucleotide 3’-phosphohydrolase in rat oligodendrocytes, J. Neurochem. 41: 506–515 (1983).

    Article  PubMed  CAS  Google Scholar 

  47. G.A. Roth, V.H. Jorgensen and M.B. Bornstein, Effect of insulin, proinsulin and pancreatic extract on myelination and remyelination in organotypic nerve tissue in culture, J. Neurol. Sci. 71: 339–350 (1985).

    Article  PubMed  CAS  Google Scholar 

  48. F.A. McMorris, T.M. Smith, S. DeSalvo and R.W. Furlanetto, Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development, Proc. Natl. Acad. Sci. USA 83: 822–826 (1986).

    Article  PubMed  CAS  Google Scholar 

  49. N.R. Bhat, G. Shanker and R.A. Pieringer, Investigations on my- elination in vitro: regulation of 2’,3’-cyclic nucleotide 3’phosphohydrolase by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Neurochem. 37: 695–701 (1981).

    Article  PubMed  CAS  Google Scholar 

  50. N.R. Bhat, L.L. Sarliève, G. Subba Rao and R.A. Pieringer, Investigations on myelination in vitro. Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 254: 9342–9344 (1979).

    PubMed  CAS  Google Scholar 

  51. N.R. Bhat, G. Subba Rao and R.A. Pieringer, Investigations on myelination in vitro. Regulation of sulfolipid synthesis by thyroid hormone in cultures of dissociated brain cells from embryonic mice, J. Biol. Chem. 256: 1167–1171 (1981).

    PubMed  CAS  Google Scholar 

  52. A. Pascual, A. Aranda, V. Ferret-Sena, M.M. Gabellec, G. Rebel and L.L. Sarliève, Triiodothyronine receptors in developing mouse neuronal and glial cell cultures and in chick cultured neurones and astrocytes, Dev. Neurosci. in press (1986).

    Google Scholar 

  53. J.M. Matthieu, U. Schneider and N. Herschkowitz, In vitro synthesis of sulfatide in a myelin deficient mutant: the Jimpy mouse, Brain Res. 42:433–439 (1972).

    Article  PubMed  CAS  Google Scholar 

  54. N.H. Sternberger, Patterns of oligodendrocyte function seen by immunocytochemistry, in: “Advances in Neurochemistry: Oligoden- droglia”, W.T. Norton, ed., Plenum Press, New York, Vol. 5, pp. 125–173, (1984).

    Google Scholar 

  55. A. Guerci, M. Monge, A. Baron-Van Evercooren, C. Lubetzki, S. Dancea, J.M. Boutry, C. Goujet-Zalc and B. Zalc, Schwann cell marker defined by a monoclonal antibody (224–58) with species cross-reactivity. I. Cellular localization, J. Neurochem. 46: 425–434 (1986).

    Article  PubMed  CAS  Google Scholar 

  56. C. Goujet-Zalc, A. Guerci, G. Dubois and B. Zalc, Schwann cell marker defined by a monoclonal antibody (224–58) with species cross-reactivity. IL. Molecular characterization of the Epitope. J. Neurochem. 46: 435–439 (1986).

    Article  PubMed  CAS  Google Scholar 

  57. C. Layet, P.P. Le Bouteiller, D. Olive, Z. Mishal, D. Cailloi, F.M. Kourilsky, B.R. Jordan and F.A. Lemonnier, Absence of cell surface fixation of a monoclonal antibody detectable by conventional immunoassays does not exclude expression of and interaction with the corresponding antigenic determinant, Eur. J. Immunol. 14: 99–102 (1984).

    Article  PubMed  CAS  Google Scholar 

  58. G.I. Tennekoon, J. Frangia, S. Aitchison and D.L. Price, Cerebroside sulfotransferase: preparation of antibody and localization of antigen in kidney, J. Cell Biol. 91: 332–339 (1981).

    Article  PubMed  CAS  Google Scholar 

  59. J.J. Helwig, J. Pieringer, L.L. Sarliève, A.A. Farooqui, G. Rebel, P. Mandel and R.A. Pieringer, Cellular localization of Na+ K+-dependent ATPase and of the enzymes of sulpholipid metabolism in rabbit kidney, in: “Advances in experimental Medicine and Biology: Enzymes of Lipid Metabolism”, S. Gatt, L. Freysz and P. Mandel, eds., Plenum Press, New York, Vol. 101, pp. 641–648 (1978).

    Google Scholar 

  60. B. Zalc, J.J. Helwig, M.S. Ghandour, and L. Sarliève, Sulfatide in the kidney: how is this lipid involved in sodium chloride transport? FEBS Lett. 92: 92–96 (1978).

    Article  PubMed  CAS  Google Scholar 

  61. K. Tadano and I. Ishizuka, Enzymatic sulfation of galactosyl-and lactosylceramides in cell lines derived from renal tubules, Biochim. Biophys. Acta 575: 421–430 (1979).

    Article  PubMed  CAS  Google Scholar 

  62. D.A. Herzlinger, T.G. Easton and G.K. Ojakian, The MDCK epithelial cell line expresses a cell surface antigen of the kidney distal tubule, J. Cell Biol. 93: 269–277 (1982).

    Article  PubMed  CAS  Google Scholar 

  63. B. Dozin and P. De Nayer, Triiodothyronine receptors in adult rat brain: topographical distribution and effect of hypothyroidism, Neuroendocrinology 39: 261–266 (1984).

    Article  PubMed  CAS  Google Scholar 

  64. S. Hamada and Y. Yoshimasa, Increases in brain nuclear triiodothyronine receptors associated with increased triiodothyronine in hyperthyroid and hypothyroid rats, Endocrinology 112: 207–211 (1983).

    Article  PubMed  CAS  Google Scholar 

  65. K. Ishiguro, Y. Suzuki and T. Sato, Effect of neonatal hypothyroidism on maturation of nuclear triiodothyronine (T3) receptors in developing rat brain, Acta Endocrinol. 95: 495–499 (1980).

    PubMed  CAS  Google Scholar 

  66. J.H. Oppenheimer, H.L. Schwartz and M.I. Surks, Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat: liver, kidney, pituitary, heart, brain, spleen and testis, Endocrinology 95: 897–903 (1974).

    Article  PubMed  CAS  Google Scholar 

  67. C.L. Thrall and T. Yanagihara, Alterations of nuclear thyroid horone receptors in cerebral cortex in vivo, J. Neurochem. 38: 669–674 (1982).

    Article  PubMed  CAS  Google Scholar 

  68. T. Valcana and P.S. Timiras, Nuclear triiodothyronine receptors in the developing brain, Mol. Cell. Endocrinol. 11: 31–41 (1978).

    Article  PubMed  CAS  Google Scholar 

  69. M.A. Haidar, S. Dube and P.K. Sarkar, Thyroid hormone receptors of developing chick brain are predominantly in the neurons, Biochem. Biophys. Res. Commun. 112: 221–227 (1983).

    Article  CAS  Google Scholar 

  70. J.M. Kolodny, P.R. Larsen and J.E. Silva, In vitro 3,5,3’-triiodothyronine binding to rat cerebrocortical neuronal and glial nuclei suggests the presence of binding sites unavailable in vivo, Endocrinology 116:2019–2028 (1985).

    Article  PubMed  CAS  Google Scholar 

  71. J. Ruel, R. Faure and J.H. Dussault, Regional distribution of nuclear T3 receptors in rat brain and evidence for preferential localization in neurons, J. Endocrinol. Invest. 8: 343–348 (1985).

    PubMed  CAS  Google Scholar 

  72. G. Shanker, N.R. Bhat and R.A. Pieringer, Investigations on myelination in vitro: thyroid hormone receptors in cultures of cells dissociated from embryonic mouse brain, Biosci. Rep. 1: 289–297 (1981).

    Article  PubMed  CAS  Google Scholar 

  73. H.L. Schwartz and J.H. Oppenheimer, Ontogenesis of 3,5,3’-triiodothyronine receptors in neonatal rat brain: dissociation between receptor concentration and stimulation of oxygen consumption by 3,5,3’-triiodothyronine, Endocrinology 103: 943–948 (1978).

    Article  PubMed  CAS  Google Scholar 

  74. A.M. Lennon, J. Osty and J. Nunez, Cytosolic thyroxine-binding protein and brain development, Mol. Cell Endocrinol. 18: 201–214 (1980).

    Article  PubMed  CAS  Google Scholar 

  75. F. Goglia, G. Gallo, S. Palmero, A. Voci and E. Fugassa, Triiodothyronine receptor sites in serum-free cultured hepatocytes from adult rat liver, Cell Biochem. Funct., 3: 91–94 (1985).

    Article  PubMed  CAS  Google Scholar 

  76. E. O’Keefe and P. Cuatrecasas, Cholera toxin and membrane gan- gliosides: binding and adenylate cyclase activation in normal and transformed cells, J. Memb. Biol. 42: 61–79 (1978).

    Article  Google Scholar 

  77. J. Francon, J. Osty, F. Chantoux and A.M. Lennon, Cellular location of cytosolic triiodothyronine binding protein in primary cultures of fetal rat brain, Mol. Cell. Endocrinol. 39: 197–207 (1985).

    Article  PubMed  CAS  Google Scholar 

  78. J. Gharbi-Chihi and J. Torresani, Thyroid hormone binding to plasma membrane preparation: studies in different thyroid states and tissues, J. Endocrinol. Invest. 4: 177–183 (1981).

    PubMed  CAS  Google Scholar 

  79. S.Y. Cheng, Structural similarities between the plasma membrane binding sites for L-thyroxine and 3,3’,5-triiodo-L-thyronine in cultured cells, J. Recept. Res. 5: 1–26 (1985).

    PubMed  CAS  Google Scholar 

  80. H.R. Herschman, Polypeptide growth factors and the CNS, Tr. Neurosci. 9: 53–57 (1986).

    Article  CAS  Google Scholar 

  81. G. Ailhaud, EZ-Z. Amri, P. Djian, C. Forest, P. Grimaldi, R. Negrel and C. Vannier, Insulin effects on the proliferation and the differentiation of OB17 cells into adipocyte-like cells, Hormones and Cell Regulation 8: 53–66 (1984).

    CAS  Google Scholar 

  82. N.R. Bhat, G. Shanker and R.A. Pieringer, Cell proliferation in growing cultures of dissociated embryonic mouse brain: macromolecule and ornithine decarboxylase synthesis and regulation by hormones and drugs, J. Neurosci. Res. 10:221–230 ( (1983).

    Google Scholar 

  83. J. Nunez, Microtubules and brain development: the effects of thyroid hormones, Neurochem. Int. 7: 959–968 (1985).

    Article  PubMed  CAS  Google Scholar 

  84. D.S. Straus, Growth-stimulatory actions of insulin in vitro and in vivo, Endocrine Rev. 5: 356–369 (1984).

    Article  CAS  Google Scholar 

  85. F.B. Jungalwala, O. Koul, A. Stoolmiller and V.S. Sapirstein, Regulation of cerebroside and sulfatide metabolism in glia cells, J. Neurochem., 45: 191–198 (1985).

    Article  PubMed  CAS  Google Scholar 

  86. F. Montiel, L. Sarliève, A. Pascual and A. Aranda, Multihormonal control of proliferation and cytosolic glycerol phosphate dehydrogenase, lactate dehydrogenase and malic enzyme in glial cells in culture, Neurochem. Int. in press (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ferret-Sena, V. et al. (1986). Nuclear Triiodothyronine Receptors and Mechanisms of Triiodothyronine and Insulin Action on the Synthesis of Cerebroside Sulfotransferase by Cultures of Cells Dissociated from Brains of Embryonic Mice. In: Freysz, L., Dreyfus, H., Massarelli, R., Gatt, S. (eds) Enzymes of Lipid Metabolism II. NATO ASI Series, vol 116. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5212-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5212-9_74

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5214-3

  • Online ISBN: 978-1-4684-5212-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics