Advertisement

Intracellular Aspects of Ganglioside Metabolism and Transport

  • Guido Tettamanti
  • Amelia Fiorilli
  • Bruno Venerando
  • Sandro Sonnino
  • Riccardo Ghidoni
Part of the NATO ASI Series book series (NSSA, volume 116)

Abstract

Gangliosides are glycosphingolipids particularly abundant in the nervous system and displaying a highly differentiated carbohydrate composition1. They are mainly located in the cell plasma membrane, and are asymmetrically disposed on the outer surface. Their hydrophobic portion (the ceramide) is inserted into the membrane layer and the oligosaccharide moiety protrudes on the membrane surface. Very small amounts of gangliosides are also present in intracellular compartments. These gangliosides are likely the expression of the transient forms moving from the site of biosynthesis to the plasma membrane or migrating from the plasma membrane to the site of degradation. Most of the information regarding ganglioside metabolism and intracellular transport pertains to brain gangliosides. However, important contributions to this topic were also provided by studies carried out on extraneural tissues, such as liver, spleen, kidney, mammary gland and thyroid, and on cultured cells, such as transformed and tumoral cells, and primary cultures of neural cells.

Keywords

Sialic Acid Golgi Apparatus Chain Base Brain Ganglioside Terminal Galactose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Ledeen, Gangliosides, in: “Handbook of Neurochemistry,” A. Lajtha, ed., Vol. 3 (2nd Ed.), Plenum Publ. Corp., New York, pp. 41–90 (1983).Google Scholar
  2. 2.
    R. M. Burton, L. Garcia-Bunuel, M. Golden, Incorpo1ation of radioactivity of D-glucosamin-l-14C, D-glucose-l-14C, C, D-galactose-l-14C and DL-serine-3–14C, into rat brain glycolipids, Biochem. 2: 580 (1963).CrossRefGoogle Scholar
  3. 3.
    K. Suzuki, Formation and turnover of the major brain gangliosides during development, J. Neurochem. 14: 917 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Holm and L. Svennerholm, Biosynthesis and biodegradation of rat brain gangliosides studied in vivo, J. Neurochem. 19: 609 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Arce, H. J. Maccioni, and R. Caputto, The biosynthesis of gangliosides. The incorporation of galactose, N- acetylgalactosamine and N-acetylneuraminic acid into endogenous acceptors of subcellular particles from rat brain in vitro, Biochem. J. 121: 483 (1971).PubMedGoogle Scholar
  6. 6.
    S. Gatt, Enzymatic aspects of sphingolipid degradation, Chem. Phys. Lipids 5: 235 (1979).CrossRefGoogle Scholar
  7. 7.
    S. Basu and M. Basu, Expression of glycosphingolipid glycosyltransferases in development and transformation, in: “The Glycoconjugates,” M.I. Horowitz and W. Pigman, eds., Academic Press, New York, Vol. III, pp. 265–286 (1982).Google Scholar
  8. 8.
    M. C.M. Yip and J. A. Dain, The enzymic synthesis of ganglioside: I. Brain uridine diphosphate D-galactose: N-acetylgalactosaminylgalactosyl-glucosylceramide galactosyl transferase, Lipids 4: 270 (1969).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Stoffyn, P. Stoffyn and M. C. M. Yip, Chemical structure of monosialoganglioside GMlb biosynthesized in vitro, Biochim. Biophys. Acta 409: 97 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    G. Tettamanti, B. Venerando, S. Roberti, V. Chigorno, S. Sonnino, R. Ghidoni, P. Orlando, P. Massari, The fate of exogenously administered brain gangliosides, in: “Gangliosides in neurological and neuromuscular function, development and repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York, pp. 225–240 (1981).Google Scholar
  11. 11.
    G. Tettamanti, R. Ghidoni, S. Sonnino, V. Chigorno, B. Venerando, A. Giuliani and A. Fiorilli, New approaches in the study of ganglioside metabolism, in: “Ganglioside structure, function, and biomedical potential”, R. W. Ledeen, R. K. Yu, M. M. Rapport and K. Zuzuki, eds., Plenum Push-Corp, New York, pp. 273–284 (1984).CrossRefGoogle Scholar
  12. 12.
    R. Ghidoni, S. Sonnino, V. Chigorno, B. Venerando, G. Tettamanti, Occurrence of glycosylation and deglycosylation of exogenously administered ganglioside GM1 in mouse liver, Biochem. J., 213: 321 (1983).PubMedGoogle Scholar
  13. 13.
    G. Tettamanti, R. Ghidoni, B. Venerando, A. Fiorilli and S. Sonnino, Intracellular aspects of ganglioside metabolism, in: “Cellular and Pathological Aspects of Glycoconjugate Metabolism,” H. Dreyfus, R. Massarelli, L. Freysz and G. Rebel, eds., INSERM, Paris, Vol. 126, pp. 135–150 (1984).Google Scholar
  14. 14.
    P. H. Fishman, R. M. Bradley, B. E. Hom, J. Moss, Uptake and metabolism of exogenous gangliosides by cultured cells: effect of choleragen on the turnover of GM1, J. Lipid Res. 24: 1002–1011 (1983).PubMedGoogle Scholar
  15. 15.
    S. Sonderfeld, E. Conzelmann, G. Schwarzmann, J. Burg, U. Hinrichs, K. Sandhoff, Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects, Eur. J. Biochem. 149: 247–255 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    G. Schwarzmann, P. Hoffmann-Bleihauer, J. Schubert, R. Sandhoff, D. Marsch, Incorporation of ganglioside analogues in fibroblast cell membranes. A spin label study, Biochem. 22: 5041–5048 (1983).CrossRefGoogle Scholar
  17. 17.
    A. Rosenberg, Biosynthesis and metabolism of gangliosides, in: “Complex Carbohydrates of nervous Tissue,” R. U. Margolis and R. K. Margolis, eds., Plenum Press, New York, pp. 25–3 (1980).Google Scholar
  18. 18.
    P. H. Fishman and R. O. Brady, Biosynthesis and function of gangliosides, Science 194: 906 (1976).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Roseman, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intracellular adhesion, Chem. Phys. Lipids 5: 270 (1970).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Svennerholm, Structure and biology of cell membrane gangliosides, in: “Cholera and Related Diarrheas,” O. Ouchterlony and J. Holmgren, eds., S. Karger, Basel, pp. 80x2013;87 (1980).Google Scholar
  21. 21.
    T. W. Keenan, Membranes of mammary gland. IX. Concentration of glycosphingolipid galactosyl and sialyltransferases in Golgi apparatus from bovine mammary gland, J. Dairy Sci. 57: 189 (1974).CrossRefGoogle Scholar
  22. 22.
    T. W. Keenan, D. J. Morre, and S. Basu, Concentration of glycosphingolipid glycosyltransferase in Golgi apparatus from rat liver, J. Biol. Chem. 249: 310 (1974).PubMedGoogle Scholar
  23. 23.
    C. A. Landa, H. J. Maccioni, and R. Caputto, The site of synthesis of gangliosides in the chick optic system, J. Neurochem. 33: 825 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    H. Miller-Podraza and P. H. Fishman, Soluble gangliosides in cultured neurotumor cells, J. Neurochem. 41: 860 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    C.-L. Schengrund and A. Rosenberg, Intracellular location and properties of bovine brain sialidase, J. Biol. Chem. 245: 6196 (1970).PubMedGoogle Scholar
  26. 26.
    G. Tettamanti, I. G. Morgan, A. Gombos, G. Vincendon, and P. Mandel, Sub-synaptosomal localization of brain particulate neuraminidase, Brain Res. 47: 515 (1972).PubMedCrossRefGoogle Scholar
  27. 27.
    R. W. Veh and M. Sander, Differentiation between ganglioside and sialyllactose sialidases in human tissues, in: “Sialidases and Sialidoses,” G. Tettamanti, P. Durand, and S. Di Donato, eds., Edi Ermes, Milan, Italy, pp. 71–109 (1981).Google Scholar
  28. 28.
    K. Sandhoff, The biochemistry of sphingolipid storage diseases, Angew. Chem. Int. Ed. Engl. 16: 273 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    G. W. Klinghardt, P. Fredman, and L. Svennerholm, Chloroquine intoxication induces ganglioside storage in nervous tissue: a chemical and histopathological study of brain, spinal cord, dorsal root ganglia and retina in the miniature pig, J. Neurochem. 37: 897 (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Miller-Podraza and P. H. Fishman, Translocation of newly synthesized gangliosides to the cell surface, Biochemistry21: 3265 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    S. Sonnino, R. Ghidoni, A. Fiorilli, B. Venerando, G. Tettamanti, Cytosolic gangliosides of rat brain: their fractionation into protein-bound complexes of different ganglioside composition, J. Neurosci. Res., 12: 193 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    R. E. Brown, F. A. Stephenson, T. Markello, Y. Barenholz and T. E. Thompson, Properties of a specific glycolipid transfer protein from bovine brain, Chem. Phys. Lipids 38: 79–93 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    C. N. Gammon and R. W. Ledeen, Evidence for the presence of a ganglioside transfer protein in brain, J. Neurochem. 44: 979–982 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    T. Sasaki, A. Abe, K. Yamada, T. Sakagami, R. Demel, Glycolipid transfer protein purified from pig brain: properties, lipid specificity, and mechanism of action, in: “Cellular and Pathological Aspects of Glycoconjugate Metabolism,” H. Dreyfus, R. Massarelli, L. Freysz and G. Rebel, eds., INSERM, Paris, Vol. 126, pp. 151–166.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Guido Tettamanti
    • 1
  • Amelia Fiorilli
    • 1
  • Bruno Venerando
    • 1
  • Sandro Sonnino
    • 1
  • Riccardo Ghidoni
    • 1
  1. 1.Department of Medical Chemistry and BiochemistryThe Medical School University of MilanMilanItaly

Personalised recommendations