Extracellular Fluid Viscosity: Its Role in the Regulation of Membrane Lipid Metabolism and Cellular Secretion

  • Saul Yedgar
  • Ben-Ami Sela
  • Nurit Reisfeld
Part of the NATO ASI Series book series (NSSA, volume 116)


Plasma viscosity, which is determined by the concentration of proteins and other macromolecules, is elevated in various pathological states associated with the excess production of plasma proteins (1). The concentration of albumin and other macromolecules in the plasma have been assumed to be involved in the control of the synthesis of proteins and lipids in the liver (2): Studies with nephrotic animals have demonstrated that the resultant hypoalbuminemia is followed by increased rates of synthesis of albumins and lipoproteins (3). In both nephrotic patients and experimental animals, infusions of macromolecules, such as dextrans or albumin, reduced plasma lipoprotein levels (4). These observations seem to support the hypothesis that colloid osmotic pressure, which is governed by the macromolecule concentration, plays a role in determining hepatic plasma protein production, although other studies have given inconclusive results (5). The colloid osmotic pressure hypothesis was further examined in hepatocyte cultures, a more well defined and controllable system (6,7). Increasing the concentrations of various macromolecules (dextrans, albumins and γ-globulins) in the culture medium had no effect on albumin synthesis, but markedly inhibited the synthesis of very low density lipoproteins (VLDL). However this effect did not correlate with either osmolarity, mass concentration or the chemical nature of the macromolecules present in the extracellular medium.


Minimal Essential Medium Relative Viscosity Plasma Viscosity Viscous Medium Medium Viscosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lowe, D., Barbenel, J.C. and Forbes, C.D. (1981) in Clinical Aspects of Blood Viscosity and Cell Deformability, Springer Verlag, Berlin.CrossRefGoogle Scholar
  2. 2.
    Baxter, J.H., Goodman, H.C. and Allen, J.C. (1961) J. Clin. Invest. 40, 490–498.PubMedCrossRefGoogle Scholar
  3. 3.
    Marsh, J.B. and Sparks C.G. (1979) J. Clin. Invest. 64, 1229–1237.PubMedCrossRefGoogle Scholar
  4. 4.
    Rossing N. and Anderson, S.B. (1966) in Protides of the Biological Fluids, Vol. 14 Edited by Peeters, H. Elsevier, Amsterdam, pp. 319–322.Google Scholar
  5. 5.
    Katz, J., Bonnoris, G., Okuyama, S. and Sellers, A. (1967) Am. J. Physiol. 212, 1255–1260.PubMedGoogle Scholar
  6. 6.
    Yedgar, S., Engler, Z., Zuri, V. and Shafrir, E. (1979) Isr. J. Med. Sci. 15, 788.Google Scholar
  7. 7.
    David, R.A., Engelhorn, S.C., Weinstein, D.B. and Steinberg, D. (1980) J. Biol. Chem. 255, 2039–2045.Google Scholar
  8. 8.
    Weisberg, H.F. (1978) Ann. Clin. Lab. Sci. 8, 155–164.PubMedGoogle Scholar
  9. 9.
    Yedgar, S., Eilam, O. and Shafrir, E. (1985) Am. J. Physiol. 248, E10–E14.PubMedGoogle Scholar
  10. 10.
    Seplowitz, H.A., Chien, S. and Smith, F.R. (1981) Atherosclerosis 38, 29–40.CrossRefGoogle Scholar
  11. 11.
    Yedgar, S., Weinstein, D.B., Patsch, W., Schonfeld, G., Casanada, F.E. and Steinberg, D., (1982) J. Biol. Chem. 257, 2188–2192.PubMedGoogle Scholar
  12. 12.
    Allen, J.C., Baxter, J.H. and Goodman, H.C. (1961) J. Clin. Invest. 40, 499–508.PubMedCrossRefGoogle Scholar
  13. 13.
    Rothchild, M.A., Oratz, M., Mongelli, J. and Schreiber, S.S. (1969) Am. J. Physiol. 216, 1127–1130.Google Scholar
  14. 14.
    Mayer, M., Yedgar, S., Joffe, M. and Shafrir, E. (1981) Nephron 29, 223–228.PubMedCrossRefGoogle Scholar
  15. 15.
    Dykes, P.W. (1969) in Physiology and Pathophysiology of Plasma Protein Metabolism Edited by Binke, G., Norberg, R., and Plantin, L.O. Pergamon, Oxford, pp. 239–246Google Scholar
  16. 16.
    Hakomori, S. (1981) Ann. Rev. Biochem. 50, 733–764.PubMedCrossRefGoogle Scholar
  17. 17.
    Konings, F. and De Potter, W. (1982) Biochem. Biophys. Res. Commun. 106, 1191–1195.PubMedCrossRefGoogle Scholar
  18. 18.
    Martin, T.W. and Lagunoff, D. (1982) Biochem. 21, 1254–1260.CrossRefGoogle Scholar
  19. 19.
    Sandhoff, K. and Pallman, B. (1978) Proc. Natl. Acad. Sci. USA 75, 122–126.PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenberg, A. (1981) in Sialidases and Sialidoses Edited by Tettamanti, G., Durand, P. and DiDonato, S. Edi Ermes, Milan, pp. 111–124.Google Scholar
  21. 21.
    Von Figura, K. and Weber, E. (1978) Biochem. J. 176, 943–950.Google Scholar
  22. 22.
    Wenger, D.A., Sattler, M., Clark, C., Tanaka, H., Suzuki, K. and Dawson, G. (1975) Science, 188, 1310–13PubMedCrossRefGoogle Scholar
  23. 23.
    Van den Bosch, H. (1982) in Phospholipids Edited by Hawthorn, J.N. and Ansell, G.D. Elsevier, Amsterdam, pp. 313–357.Google Scholar
  24. 24.
    Blackwell, G.J. and Flower, R.J. (1983) Brit. Med. Bulletin 39, 260–264.Google Scholar
  25. 25.
    Sleight, R.G. and Pagano, R.E. (1984) J. Cell Biol. 99, 742–751.PubMedCrossRefGoogle Scholar
  26. 26.
    Kramer, J.M.H., Van Den Eaken, M.W.J., Pathmamansharan, C. and Wiersema, P.A. (1977) Biochem. 16, 3932–3935.CrossRefGoogle Scholar
  27. 27.
    Schulz, H. and Fong, J.C. (1981) in Methods in Enzymology, Vol. 72. Academic Press, N.Y., pp. 604–605.Google Scholar
  28. 28.
    Fontaine, M. and Malmendier, C.L. (1975) Clin. Chem. Acta 64, 91–93.CrossRefGoogle Scholar
  29. 29.
    Ledford, B.J. and Davis, D.F. (1983) J. Biol. Chem. 258, 3304–3308.PubMedGoogle Scholar
  30. 30.
    Slotboom, A.J., Verheij, H.M. and De Haas, G.H. (1982) in Phospholipids Edited by Hawthorne, J.N. and Ansell, G.D., Elsevier, Amsterdam, pp. 359–434.Google Scholar
  31. 31.
    Sandhoff, K., Scheel, G. and Nehrkon, H. (1981) in Sialidases and Sialidoses Edited by Tettamanti, G., Durand, P. and DiDonato, S. Edi Ermes, Milan, pp. 125–143Google Scholar
  32. 32.
    Rholam, M., Scarlata, S. and Weber, G. (1984) Biochemistry 23, 6793–6796.CrossRefGoogle Scholar
  33. 33.
    McKinnie, R.E. and Olson, J.S. (1981) J. Biol. Chem. 256, 8928–8932.PubMedGoogle Scholar
  34. 34.
    Breece, D., Bowne, S.F., Czege, J., Eisenstein, L., Frauenfelder, H., Good, D., Marden, M.C., Marque, J., Ormos, P., Reinisch, L., and Yue, T. (1981) Photochem. and Photobiol. 33, 517–522.CrossRefGoogle Scholar
  35. 35.
    Gavish, B. and Weber, M.M. (1979) Biochemistry 18, 1269–1275.PubMedCrossRefGoogle Scholar
  36. 36.
    Den, H., Sela, B., Rosman, S. and Sachs, L. (1974) J. Biol. Chem. 249, 659–661.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Saul Yedgar
    • 1
  • Ben-Ami Sela
    • 2
  • Nurit Reisfeld
    • 1
  1. 1.Department of BiochemistryThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael
  2. 2.Department of Biochemistry, Faculty of ScienceTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations