Advertisement

Aging of Rat Heart Myocytes and Fibroblasts: Relationship between Lipid Composition, Membrane Organization and Biological Properties

  • Elishalom Yechiel
  • Yoav I. Henis
  • Yechezkel Barenholz
Part of the NATO ASI Series book series (NSSA, volume 116)

Abstract

The age-related alterations in the lipid composition in two types of cultured rat-heart cells, the myocytes and the fibroblasts, was studied in relation to several biochemical and biophysical parameters. For both cell types aged (14–15 day old) cultures displayed higher mole ratios of sphingomyelin to phosphatidylcholine, as well as elevated cholesterol levels. A concomitant increase was observed in the total protein content of the cells and in the Vmax values of seven marker enzymes. Beating rate of the myocytes was reduced from 160 ± 20 in the young cells to 20 ± 20 in the old myocytes. Fluorescence photobleaching recovery was employed to study the lateral mobility of the lipid probe NBD-phosphatidyl ethanolamine and of membrane glycoproteins that bind succinylated concanavalin A. The mobile fractions of both probes were higher in aged cultures, while the lateral diffusion coefficients were lower. To further demonstrate the dependence of the above parameters on the cellular lipid composition, the lipid composition of old cultures was manipulated by treatments with liposomes (small unilamellar vesicles) of specific compositions. Treatments with liposomes enriched with egg phosphatidylcholine reversed the lipid composition towards that of young (5–6 day old) cultures. This was followed by a concomitant reversal of the measured biochemical and biophysical parameters to the values observed in young cultures. These findings suggest that alterations in the organization and mobility of cell membrane constituents are involved in mediating changes in cellular functions. Since the two cell types demonstrate similar behaviour it appears that the modulation of cellular properties through the membrane lipid composition may be a general phenomenon in many cell types.

Keywords

Lipid Composition Membrane Lipid Composition Cholesterol Depletion Small Unilamellar Vesicle Young Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rouser, R, Kitchevsky, G, & Yamamato, A, (1971) Adv. in Lipid Res., 10, 261–360.Google Scholar
  2. 2.
    White, D, (1973) Form and function of phospholipids, (Eds GB, Ansell, JN, Hawthorne & RMC, Dawson) p. 441, Elsevier, London.Google Scholar
  3. 3.
    Barenholz, Y, (1984) Physiology of membrane fluidity (Ed M, Shinitzky) Vol 1, p. 131, CRC Press, Boca Rayton, Florida.Google Scholar
  4. 4.
    Shinitzky, M, (1984) Physiology of membrane fluidity (Ed M, Shinitzky) Vol 1, p. 1, CRC Press, Boca Rayton, Florida.Google Scholar
  5. 5.
    Klausner, RD, & Kleinfeld, AM, (1984) Cell surface dynamics (Eds AS, DeLis, and FW, Weigel) p. 23–58, Marcel Dekker, New York.Google Scholar
  6. 6.
    Yechiel, E, & Barenholz, Y, (1985) J. Biol. Chem. 260, 9123–9131.PubMedGoogle Scholar
  7. 7.
    Yechiel, E, Barenholz, Y, & Henis, YI, (1985) J. Biol. Chem. 260, 9132–9136.PubMedGoogle Scholar
  8. 8.
    Yechiel, E., Henis, Y.I. & Barenholz, Y., (1985) Submitted for publication.Google Scholar
  9. 9.
    Shinitzky, M, & Yuli, I, (1982) Chem. Phys. Lipids 30, 261–282.CrossRefGoogle Scholar
  10. 10.
    Rothstein, M, (1982) Biochemical approaches to aging, Academic Press, New York.Google Scholar
  11. 11.
    Kasten, FH, (1973) in Tissue culture: methods and applications (Eds PF, Kruse & MK, Patterson) p. 72, Academic Press, New York.Google Scholar
  12. 12.
    Barenholz, Y, Suurkuusk, JE, Mohtcastle, D, Thompson, TE, & Biltonen, RL, (1976) Biochemistry 15, 2441–2447.PubMedCrossRefGoogle Scholar
  13. 13.
    Axelrod, D, Kopel, DE, Schlessinger, J, Elson, EL, & Webb, WW, (1976) Biophys. J. 16, 1055–1069.PubMedCrossRefGoogle Scholar
  14. 14.
    Wolf, DE, Edidin, M, & Dragsten, PR, (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2043–2045.PubMedCrossRefGoogle Scholar
  15. 15.
    Koppel, DE, & Sheetz, MP, Nature (Lond.) 293 (1981) 159–161.CrossRefGoogle Scholar
  16. 16.
    Frank, A, Barenholz, Y, Lichtenberg, D, & Thompson, TE, (1983) Biochemistry 22, 5647–5651.CrossRefGoogle Scholar
  17. 17.
    Stubbs, CD, and Smith, AD, (1984) Biochim. Biophys. Acta 779, 89–137.PubMedCrossRefGoogle Scholar
  18. 18.
    Pal, R, Barenholz, Y, & Wagner, RR, (1980) J. Biol. Chem. 255, 5802–5806.PubMedGoogle Scholar
  19. 19.
    Hasin, Y, Shimoni, Y, Stein, O, & Stein, Y, (1980) J. Mol. and Cell. Cardiol. 12, 675–683.CrossRefGoogle Scholar
  20. 20.
    Harary, I, in Handbook of physiology, Section 2. The cardiovascular system (Eds RM, Berne & N, Speralakis) Vol 1, p. 43, Am. Physiol. Soc. Bethesda, MD (1979).Google Scholar
  21. 21.
    Yuli, I, Tomonaga, A, & Snyderman, R, (1981) Proc. Natl. Acad. Sci. USA 79 (1981) 5906–5910.Google Scholar
  22. 22.
    Yahara, I, & Edelman, GM, (1973) Exp. Cell Res. 81, 143–155.PubMedCrossRefGoogle Scholar
  23. 23.
    Edelman, GM, (1976) Science 192, 218–226.PubMedCrossRefGoogle Scholar
  24. 24.
    Henis, YI, & Elson, EL, (1981) Exp. Cell Res. 136, 189–201.PubMedCrossRefGoogle Scholar
  25. 25.
    Peters, R, (1981) Cell Biol. Inter. Reports 5, 733–760.CrossRefGoogle Scholar
  26. 26.
    Edidin, M, (1981) Membrane structure (Eds JB, Finean and RH, Michell) Vol 1, p. 37, Elsevier/North-Holland, Amsterdam.CrossRefGoogle Scholar
  27. 27.
    Heimreich, EJM, & Elson, EL, (1981) Adv. Cyc. Nuc. and Prot. Phos. Res. 18, 1.Google Scholar
  28. 28.
    Sheetz, MP, Schindler, M, & Koppel, DE, (1980) Nature (Lond.) 285, 510–512.CrossRefGoogle Scholar
  29. 29.
    Henis, YI, & Elson, EL, (1981) Proc. Natl. Acad. Sci. USA 78, 1072–1076.PubMedCrossRefGoogle Scholar
  30. 30.
    Henis, YI, (1984) J. Biol. Chem. 259, 1515–1519.Google Scholar
  31. 31.
    Tank, DW, Wu, E-S, & Webb, WW, (1982) J. Cell Biol. 92, 207–212.PubMedCrossRefGoogle Scholar
  32. 32.
    Houslay, MD, & Stanley, KK, (1982) Dynamics of biological membranes, J. Wiley & Sons, New York.Google Scholar
  33. 33.
    Roseman, MA & Thompson, TE, (1980) Biochemistry, 19, 439–444.PubMedCrossRefGoogle Scholar
  34. 34.
    Cohen, R, & Barenholz, Y, (1978) Biochim. Biophys. Acta 509, 181–187.PubMedCrossRefGoogle Scholar
  35. 35.
    Borochov, H, Shinitzky, M, & Barenholz, Y, (1979) Cell Biophysics 1, 219–228.PubMedCrossRefGoogle Scholar
  36. 36.
    Schlessinger, J, Schreiber, AB, Levi, A, Lax, I, Libermann, T, & Yarden, Y, (1983) CRC Crit. Rev. Biochem. 14, 93.PubMedCrossRefGoogle Scholar
  37. 37.
    Rubenstein, JLR, Smith, BA, & McConnell, HM, (1979) Proc. Natl. Acad. Sci. USA 76, 15–18.PubMedCrossRefGoogle Scholar
  38. 38.
    Estep, TN, Mountcastle, DB, Barenholz, Y, Biltonen, RL, & Thompson, TE, (1979) Biochemistry 18, 2112–2117.PubMedCrossRefGoogle Scholar
  39. 39.
    Presti, FT, & Chan, SI, (1982) Biochemistry 16, 3821–3820.CrossRefGoogle Scholar
  40. 40.
    Rintoul, DA, Chous, S, & Silbert, DF, (1979) J. Biol. Chem. 254, 10070–10077.PubMedGoogle Scholar
  41. 41.
    Roy, AK, & Chatterjee, B, (1984) Molecular Basis of Aging, Academic Press, New York.Google Scholar
  42. 42.
    Mowri, H, Mojima, S, & Inoue, K, (1984) Biochim. J., ( Japan ) 95, 551–558.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Elishalom Yechiel
    • 1
  • Yoav I. Henis
    • 2
  • Yechezkel Barenholz
    • 1
  1. 1.Departments of BiochemistryThe Hebrew University - Hadassah Medical SchoolJerusalemIsrael
  2. 2.Departments of BiochemistryTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations