Synthesis and Properties of Fluorescent Analogs of Cytidine Diphosphate-Diacylglycerol and Phosphatidylinositol

  • Paul S. Uster
  • Richard E. Pagano
Part of the NATO ASI Series book series (NSSA, volume 116)


To examine the synthesis and intracellular transport of lipids, our laboratory has developed an approach using fluorescent lipid derivatives that appear to behave as analogs of their natural counterparts. With this methodology we can examine the movements of fluorescent lipid molecules in living cells by high-resolution fluorescence microscopy, and correlate these data with the results of classical biochemical investigations (for a review see ref. 1).


Membrane Fraction Phosphatidic Acid Cell Membrane Fraction Sulfonyl Chloride Unilamellar Liposome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Pagano and R. G. Sleight, Defining lipid transport pathways in animal cells, Science 229: 1051 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    P. W. Majerus, E. J. Neufeld, and D. B. Wilson, Production of phosphoinositide-derived messengers, Cell 37: 701 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    J. L. Marx, The polyphosphoinositides revisited, Science 224: 271 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Nishizuka, The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308: 693 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    R. H. Michell, Inositol phospholipids in membrane function, Trends Biochem. Sci. 4: 128 (1979).Google Scholar
  6. 6.
    R. E. Pagano, K. J. Longmuir, O. C. Martin, and D. K. Struck, Metabolism and intracellular localization of a fluorescently labeled intermediate in lipid biosynthesis within cultured fibroblasts, J. Cell Biol. 91: 872 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    D. K. Ford and G. Yerganian, Observations on the chromosomes of Chinese hamster cells in tissue culture, J. Natl. Cancer Inst. 21: 393 (1958)PubMedGoogle Scholar
  8. 8.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265 (1951).Google Scholar
  9. 9.
    B. W. Agranoff and W. D. Suomi, Cytidine diphosphate-DL-dipalmitin, Biochem. Prep. 10: 47 (1963).Google Scholar
  10. 10.
    G. M. Carman and A. S. Fischl, Modification of the Agranoff-Suomi method for the synthesis of CDP-diacylglycerol, J. Food Biochem. 4: 53 (1980).CrossRefGoogle Scholar
  11. 11.
    E. J. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol. 37: 911 (1959).PubMedCrossRefGoogle Scholar
  12. 12.
    M. Hokin-Neaverson and G. S. Parries, Phosphatidylinositol synthase in mammalian pancreas in: “Inositol and phosphoinositides: metabolism and regulation” J. E. Bleasdale, J. Eichberg, and G. Hauser, eds., Humana Press, Clifton NJ (1985).Google Scholar
  13. 13.
    D. K. Struck, D. Hoekstra, and R. E. Pagano, Use of resonance energy transfer to monitor liposome fusion, Biochemistry 20: 4093 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    B. Rouser, A. Siakotos, and S. Fleischer, Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots, Lipids 1: 85 (1966).PubMedCrossRefGoogle Scholar
  15. 15.
    J. M. H. Kremer, M. W. J. v. d. Esker, C. Pathmamanoharan, and P. H. Wiersema, Vesicles of variable diameter prepared by a modified injection method, Biochemistry 17: 3932 (1977).CrossRefGoogle Scholar
  16. 16.
    J. Phillipot, S. Mutaftshiev, and J. P. Liautard, A very mild method for allowing the encapsulation of very high amounts of macromolecules into very large (1000 nm) unilamellar liposomes, Biochim. Biophys. Acta 734: 143 (1983).Google Scholar
  17. 17.
    R. G. Sleight and R. E. Pagano, Transport of a fluorescent phosphatidylcholine analog from the plasma membrane to the Golgi apparatus, J. Cell Biol. 99: 742 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    R. G. Sleight and R. E. Pagano, Transbilayer movement of a fluorescent phosphatidylethanolamine analogue across the plasma membranes of cultured mammalian cells, J. Biol. Chem. 260: 1146 (1985).PubMedGoogle Scholar
  19. 19.
    A. M. Gilfillan, A. J. Chu, D. A. Smart, and S. A. Rooney, Single plate separation of lung phospholipids including disaturated phosphatidylcholine, J. Lipid Res. 24: 1651 (1983).PubMedGoogle Scholar
  20. 20.
    W. Thompson and G. MacDonald, Isolation and characterization of cytidine diphosphate diglyceride from beef liver, J. Biol. Chem. 250: 6779 (1975).PubMedGoogle Scholar
  21. 21.
    M. Hokin-Neaverson, K. Sadeghian, D. W. Harris, and J. S. Merrin, Synthesis of CDP-diglyceride from phosphatidylinositol and CMP, Biochem. Biophys. Res. Commun. 78: 364 (1977).CrossRefGoogle Scholar
  22. 22.
    T. Takenawa and K. Egawa, CDP-diglyceride:inositol transferase from rat liver. Purification and properties, J. Biol. Chem. 252: 5419 (1977).PubMedGoogle Scholar
  23. 23.
    R. H. Rao and K. P. Strickland, On the solubility, stability and partial purification of CDP-diacyl-sn-glycerol: inositol transferase from rat brain, Biochim. Biophys. Acta 348: 306 (1974).CrossRefGoogle Scholar
  24. 24.
    C. Prottey and J. N. Hawthorne, The biosynthesis of phosphatidic acid and phosphatidylinositol in mammalian pancreas, Biochem. J. 105: 379 (1967).PubMedGoogle Scholar
  25. 25.
    R. E. Pagano and K. J. Longmuir, Phosphorylation, transbilayer movement, and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblasts, J. Biol. Chem. 260: 1909 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Paul S. Uster
    • 1
  • Richard E. Pagano
    • 1
  1. 1.Department of EmbryologyCarnegie Institution of WashingtonBaltimoreUSA

Personalised recommendations