Hormonal Regulation of Exogenous Fatty-Acid Incorporation into Lipids in Cultured Hamster Fibroblasts

  • Cécile Mazière
  • Jean-Claude Mazière
  • Liliana Mora
  • Martine Auclair
  • Jacques Polonovski
Part of the NATO ASI Series book series (NSSA, volume 116)


Many works have been concerned with hormonal regulation of triacylglycerols (TG) metabolism in hepatocytes (1,2) and adipocytes (3,4). However, other tissues may have different regulation mechanisms than liver, whose role is to redistribute fatty acids, and adipose tissue whose role is to store fatty acids.


Cyclic Monophosphate Exogenous Fatty Acid Free Fatty Acid Release Dibutyryl Adenosine Diacylglycerol Acyltransferase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



dibutyryl adenosine 3′5′ cyclic monophosphate






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Heimberg, I. Weinstein and M. Kohout, The effects of glucagon, dibutyryl cyclic adenosine 3′5′ monophosphate and concentration of free fatty acid on hepatic lipid metabolism, J. Biol. Chem. 244: 5131 (1969).PubMedGoogle Scholar
  2. 2.
    H.P. Haagsman, C.G.M. De Haas, M.J.H. Geelen and L.M.G. Van Golde, Regulation of triacylglycerol synthesis in the liver. Decrease in Diacylglycerol Acyltransferase activity after treatment of isolated rat hepatocytes with glucagon, Biochim. Biophys. Acta 664: 74 (1981).CrossRefGoogle Scholar
  3. 3.
    J.D. Corbin, E.M. Reimann, D.A. Walsh and E.G. Krebs, Activation of adipose tissue lipase by sketelel muscle cyclic Adenosine 3’5’ mono-phosphate stimulated protein kinase. J. Biol. Chem. 245: 4849 (1970).PubMedGoogle Scholar
  4. 4.
    H.G. Mimmo and P. Cohen. Hormonal control of protein phosphorylation, Adv. Cyclic Nucl. Res. 8: 145 (1977).Google Scholar
  5. 5.
    A.G. Gilman and M. Nirenberg. Effect of catecholamines on the adenosine 3’5’ cyclic monophosphate concentrations of clonal satellite cells of neurones. Proc. Natl. Acad. Sci. USA 68: 2165 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Jimenez de Asua, E.S. Surian, M.M. Flawia and H.N. Torres. Effect of insulin on the growth pattern and adenylate cyclase activity of BHK fibroblasts. Proc. Natl. Acad. Sci. USA 70: 1388 (1973).CrossRefGoogle Scholar
  7. 7.
    P. Tournier, R. Cassingena, R. Wicker, J. Coppey and H. Suarez. Study of the induction mechanism in syrian hamster cells transformed bu SV40 virus. Properties of a clonal cell line. Int. J. Cancer 2: 117 (1967).Google Scholar
  8. 8.
    E.A. Dosado, A.W. Hsieand F. Snyder. Rapid screening of lipid metabolism in monolayer cell culture. J. Lipid Res. 17: 285 (1976).PubMedGoogle Scholar
  9. 9.
    W.C. Claycomb and G.S. Kilsheimer. Effect of glucagon, adenosine 3’5’ monophosphate and theophylline on free fatty acid release by rat liver slices and on tissue levels of coenzyme A esters, Endocrinology 84: 1179 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    J.R. Sheppard. Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3’5’ cyclic monophosphate. Proc. Natl. Acad. Sci. USA 68: 1316 (1971).PubMedCrossRefGoogle Scholar
  11. 11.
    I.H. Pastan, G.S. Johnson and W.B. Anderson, Role of cyclic nucleotides in growth control. Ann. Rev. Biochem. 44: 491 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    S.L. Pelech, P.H. Pritchard and D.E. Vance, Cyclic AMP inhibits phosphatidylcholine biosynthesis in cultured rat hepatocytes. J. Biol. Chem. 256: 8283 (1981).PubMedGoogle Scholar
  13. 13.
    P.A. Edwards, D. Lemongello and A.M. Fogelman, The effect of glucagon norepinephrine and dibutyryl ayclic AMP on cholesterol efflux and on the activity of 3 hydroxy-3 methyl-glutaryl CoA reductase in rat hepatocytes. J. Lipid Res. 20: 2 (1979).PubMedGoogle Scholar
  14. 14.
    J.C. Mazière, C. Mazière, J. Gardette, L. Mora and J. Polonovski, Effect of cyclic AMP on LDL binding and internalization by cultured human fibroblasts. Biochem. Biophys. Res. Comm. 112: 795 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    P.D. Bewsher and J. Ashmore, Ketogenic and lipotylic effects of glucagon on liver. Biochem. Biophys. Res. Comm. 24: 431 (1966).PubMedCrossRefGoogle Scholar
  16. 16.
    R.A. Mooney and M.D. Lane, Formation and turnover of triglyceride rich vesicles in the chick liver cells, J. Biol. Chem. 256: 11724 (1981).PubMedGoogle Scholar
  17. 17.
    M.J.H. Geelen, R.A. Harris, A.C. Beynen and S.A. Mc Cune, Short-term hormonal control of hepatic lipogenesis. Diabetes 29: 1006 (1980).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Cécile Mazière
    • 1
  • Jean-Claude Mazière
    • 1
  • Liliana Mora
    • 1
  • Martine Auclair
    • 1
  • Jacques Polonovski
    • 1
  1. 1.Laboratoire de Chimie BiologiqueFaculté de Médecine Saint-Antoine and UA 524 CNRSParisFrance

Personalised recommendations