Advertisement

A Model for Studying Membrane Fatty Acid Transport : Acyl-Coenzyme a Synthesis in Human Erythrocyte Ghosts

  • Olivier Morand
  • Marie-Stéphane Aigrot
Part of the NATO ASI Series book series (NSSA, volume 116)

Abstract

The mechanism by which unesterified fatty acids are translocated across plasma membranes remains unclear and is the object of several experimental approaches. This translocation process is essential to the cell physiology, especially in organs such as heart, muscle and kidney which derive mostly their energy from the oxidation of fatty acids (Gold and Spitzer, 1964; Fritz, 1961; Neely and Morgan, 1974). Most cells undergo de novo synthesis of acyl chains. However, all tissues take up preformed long chain saturated, monounsaturated and polyunsaturated fatty acids. Metabolic utilization including activation, esterification and oxidation pathways follows fatty acid uptake and membrane translocation which are discussed hereby.

Keywords

Palmitic Acid Fatty Acid Uptake Fatty Acid Concentration Translocation Process Fatty Acid Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumrad N.A., Park J.H and Park C.R. (1984) J. Biol. Chem. 259, 8945–8953.PubMedGoogle Scholar
  2. Abumrad N.A., Perkins R.C., Dalton L.R., Park C.R. and Park J.H. (1983) J. Magn. Reson. 51, 372–382.Google Scholar
  3. Abumrad N.A., Perkins R.C., Park J.H. and Park C.R. (1981) J. Biol. Chem. 256, 9183–9191.PubMedGoogle Scholar
  4. Banis R.J. and Tove S.B. (1974) Biochim. Biophys. Acta 348, 210–220.Google Scholar
  5. Bender W.W., Garan H. and Berg H.C. (1971) J. Mol. Biol. 58, 783–797.PubMedCrossRefGoogle Scholar
  6. Black P.N., Kinian S.F., DiRusso C.C. and Nunn W.D. (1985) J. Biol. Chem. 260, 1780–1789.PubMedGoogle Scholar
  7. Böhlen P., Stein S., Dairman W. and Udenfriend S. (1973) Arch. Biochem. Biophys. 155, 213–220.PubMedCrossRefGoogle Scholar
  8. Bretscher M. (1972) Nature (London) 236, 11–12.CrossRefGoogle Scholar
  9. DeGrella R.F. and Light R.J. (1980a) J. Biol. Chem. 255, 9731–9738.PubMedGoogle Scholar
  10. DeGrella R.F. and Light R.J. (1980b) J. Biol. Chem. 255, 9739–9745.PubMedGoogle Scholar
  11. Dise C.A., Goodman D.B.P. and Rasmussen H. (1980) J.Lipid Res. 21, 292–300.PubMedGoogle Scholar
  12. Dole V.P. (1956) J. Clin. Invest. 35, 350–357.CrossRefGoogle Scholar
  13. Donabedian R.K. and Karmen A. (1967) J. Clin. Invest. 46, 1017–1027.PubMedCrossRefGoogle Scholar
  14. Duchon G. and Collier H.B. (1971) J. Memb. Biol. 6, 138–157.CrossRefGoogle Scholar
  15. Dugan J.M., Dise C.A. and Goodman D.B.P. (1985) Bichim. Biophys. Acta 816, 93–101.CrossRefGoogle Scholar
  16. Fritz I.B. (1961) Physiol. Rev. 41, 52–129.PubMedGoogle Scholar
  17. Gold M. and Spitzer J.J. (1965) Am. J. Physiol. 206, 159–163.Google Scholar
  18. Klein K., Steinberg R., Fiethen B. and Overath P. (1971) Eur. J. Biochem. 19, 442–450.PubMedCrossRefGoogle Scholar
  19. Klotz I.M. and Walker F.M. (1946) J. Am. Chem. Soc. 68, 1486–1490.PubMedCrossRefGoogle Scholar
  20. Kono T., Robinson F.W., Sarver J.A., Vega F.V. and Pointer R.H. (1977) J. Biol. Chem. 252, 2226–2233.PubMedGoogle Scholar
  21. Mahadevan S. and Sauer F. (1974) Arch. Biochem. Biophys. 164, 185–193.PubMedCrossRefGoogle Scholar
  22. Maloy S.R., Ginsburgh C.L., Simons R.W. and Nunn W.D. (1981) J. Biol. Chem. 256, 3735–3742.PubMedGoogle Scholar
  23. Mishina M., Kamiryo T., Tashiro S.I. and Numa S. (1978) Eur. J. Biochem. 82, 347–354.PubMedCrossRefGoogle Scholar
  24. Morand O. and Aigrot M.S. (1985) Biochim. Biophys. Acta 835, 68–76.CrossRefGoogle Scholar
  25. Morand O., Fibach E., Dagan A. and Gatt S. (1982) Biochim. Biophys. Acta 711, 539–550.PubMedCrossRefGoogle Scholar
  26. Morand O., Fibach E., Livni N. and Gatt S. (1984) Biochim. Biophys. Acta 793, 95–104.PubMedCrossRefGoogle Scholar
  27. Mulder E. and Van Deenen L.L.M. (1965) Biochim. Biophys. Acta 106, 106–117.CrossRefGoogle Scholar
  28. Neely J.R. and Morgan H.E. (1974) Ann. Rev. Physiol. 36, 413–459.CrossRefGoogle Scholar
  29. Nunn W.D. and Simons R.W. (1978) Proc. Natl. Acad. Sci. USA 75, 3377–3381.CrossRefGoogle Scholar
  30. Nunn W.D., Simons R.W., Egan P.A. and Maloy S.R. (1979) J. Biol. Chem. 254, 9130–9134.PubMedGoogle Scholar
  31. Overath P., Pauli G. and Schairer H.U. (1969) Eur. J. Biochem. 7, 559–574.PubMedCrossRefGoogle Scholar
  32. Paris S., Fosset M., Samuel D. and Ailhaud G. (1977) J. Mol. Cell. Biol. 9, 161–174.Google Scholar
  33. Paris S., Samuel D., Jacques Y., Gache C., Franchi A. and Ailhaud G. (1978) Eur. J. Biochem. 83, 235–243.PubMedCrossRefGoogle Scholar
  34. Paris S., Samuel D., Romey G. and Ailhaud G. (1979) Biochimie 61, 361–364.PubMedCrossRefGoogle Scholar
  35. Rosenfeld I.S., D’Agnolo G. and Vagelos P.R. (1975) Anal. Biochem. 64, 221–228.PubMedCrossRefGoogle Scholar
  36. Sallus L., Haselbeck R.J. and Nunn W.D. (1983) J. Bacteriol. 155, 1450–1454.PubMedGoogle Scholar
  37. Samuel D., Paris S. and Ailhaud G. (1976) Eur. J. Biochem. 64, 583–595.PubMedCrossRefGoogle Scholar
  38. Shohet S.B., Nathan D.G. and Karnovsky M.L. (1968) J.Clin.Invest. 47, 1096–1108.PubMedCrossRefGoogle Scholar
  39. Spector A.A. (1975) J. Lipid Res. 16, 165–179.PubMedGoogle Scholar
  40. Spector A.A., Steinberg D. and Tanaka A. (1965) J. Biol. Chem. 240, 1032–1041.PubMedGoogle Scholar
  41. Steck J.L. and Kant J.A. (1974) Methods in Enzym. 31, 172–180.CrossRefGoogle Scholar
  42. Stoffel W. and Michaelis G. (1976) Hoppe Seyler’s Z. Physiol. Chem. 357, 925–935.CrossRefGoogle Scholar
  43. Stremmel W., Strohmeyer G., Borchard F., Kochwa S. and Berk P. (1985) Proc. Natl. Acad. Sci. USA 82, 4–8.PubMedCrossRefGoogle Scholar
  44. Waku K. and Lands W.E. (1968) J. Lipid Res. 9, 12–18.PubMedGoogle Scholar
  45. Weisiger R.A., Gollan J. and Ockner R.K. (1981) Science 211, 1048–1051.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Olivier Morand
    • 1
  • Marie-Stéphane Aigrot
    • 1
  1. 1.Laboratoire de Neurochimie — INSERM Unité 134Hôpital de la SalpêtrièreParisFrance

Personalised recommendations