Advertisement

Structure and Function of the Nonspecific Lipid Transfer Protein (Sterol Carrier Protein 2)

  • K. W. A. Wirtz
  • J. Westerman
  • A. van Amerongen
  • T. P. van der Krift
Part of the NATO ASI Series book series (NSSA, volume 116)

Abstract

Rat liver contains proteins that in vitro modulate microsomal enzymes of cholesterol biosynthesis (for a recent review, see reference 1). One of these cytosolic modulators is sterol carrier protein 2 (SCP2) which stimulates the microsomal conversion of intermediates between lanosterol and cholesterol (2–4). This protein also facilitates net mass transfer of cholesterol between membranes (5–7). Through this action SCP2 stimulates the formation of cholesterol esters by microsomal membranes (6,8,9) and the conversion of cholesterol into pregnenolone by adrenal mitochondria (1,10). However, a recent study with rat hepatocytes and Reuber H35 hepatoma cells failed to provide support for an important role of SCP2 in cholesterol biosynthesis and esterification in situ (11). Additional questions about its role in cellular cholesterol metabolism were raised by the observation that SCP2 may be secreted by Morris hepatoma cells (12).

Keywords

Morris Hepatoma Outer Monolayer Nonspecific Lipid Transfer Protein Single Cysteine Residue Morris Hepatoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.J. Scallen, A. Pastuszyn, B.J. Noland, R. Chanderbhan, A. Kharroubi and G.V. Vahouny (1985) Chem. Phys. Lipids 38, 239–261.PubMedCrossRefGoogle Scholar
  2. 2.
    R.C. Johnson and S.N. Shah (1973) Biochem. Biophys. Res. Commun. 53, 105–111.Google Scholar
  3. 3.
    T.J. Scallen, B. Seetharam, M.V. Srikantaiah, E. Hansbury and M.K. Lewis (1975) Life Sci. 16, 853–374.PubMedCrossRefGoogle Scholar
  4. 4.
    J.L. Gaylor and C.V. Delwiche (1976) J. Biol. Chem. 251, 6638–6645.Google Scholar
  5. 5.
    R.C. Crain and D.B. Zilversmit (1980) Biochim. Biophys. Acta 620, 37–48.Google Scholar
  6. 6.
    J.M. Trzaskos and J.L. Gaylor (1983) Biochim. Biophys. Acta 751 52–65.Google Scholar
  7. 7.
    P. North and S. Fleischer (1983) J. Biol. Chem. 258, 1242–1253.Google Scholar
  8. 8.
    K.L. Gavey, B.J. Noland and T.J. Scallen (1981) J. Biol. Chem. 256, 2993–2999.Google Scholar
  9. 9.
    B.J.H.M. Poorthuis and K.W.A. Wirtz (1982) Biochim. Biophys. Acta 710, 99–105.Google Scholar
  10. 10.
    R. Chanderbhan, B.J. Noland, T.J. Scallen and G.V. Vahouny (1982) J. Biol. Chem. 257, 8928–8934.Google Scholar
  11. 11.
    G.P.H. van Heusden, J. Souren, M.J.H. Geelen and K.W.A. Wirtz (1985) Biochim. Biophys. Acta 846, 21–25.Google Scholar
  12. 12.
    B.J. Noland, R.E. Arebalo, E. Hansbury and T.J. Scallen (1980) J. Biol. Chem. 255, 4282–4289.Google Scholar
  13. 13.
    B.J. Noland, R.E. Arebalo, E. Hansbury and T.J. Scallen (1980) J. Biol. Chem. 255, 4282–4289.Google Scholar
  14. 14.
    B. Bloj and D.B. Zilversmit (1977) J. Biol. Chem. 252, 1613–1629.Google Scholar
  15. 15.
    R.C. Crain and D.B. Zilversmit (1980) Biochemistry 19, 1433–1439.PubMedCrossRefGoogle Scholar
  16. 16.
    B. Bloj and D.B. Zilversmit (1981) J. Biol. Chem. 256, 5988–5991.Google Scholar
  17. 17.
    R.C. Crain (1982) Lipids 17, 935–943.CrossRefGoogle Scholar
  18. 18.
    B.J.H.M. Poorthuis, J.F.C. Glatz, R. Akeroyd and K.W.A. Wirtz (1981) Biochim. Biophys. Acta 665, 256–261.Google Scholar
  19. 19.
    J. Westerman and K.W.A. Wirtz (1985) Biochem. Biophys. Res. Commun. 127, 333–338.Google Scholar
  20. 20.
    P.Y. Chou and G.D. Fasman (1978) Adv. Enzymol. 47, 45–148.PubMedGoogle Scholar
  21. 21.
    V.I. Lim (1974) J. Mol. Biol. 88, 857–872.Google Scholar
  22. 22.
    V.I. Lim (1974) J. Mol. Biol. 88, 873–894.Google Scholar
  23. 23.
    J. Kyte and R.R. Doolittle (1982) J. Mol. Biol. 157, 105–132.Google Scholar
  24. 24.
    T.A. Berkhout, C. Van den Bergh, H. Mos, B. de Kruijff and K.W.A. Wirtz (1984) Biochemistry 23, 6894–6900.CrossRefGoogle Scholar
  25. 25.
    J.W. Nichols and R.E.-Pagano (1983) J. Biol. Chem. 258, 5368–5371.Google Scholar
  26. 26.
    T. Teerlink, T.P. Van der Krift, G.P.H. van Heusden and K.W.A. Wirtz (1984) Biochim. Biophys. Acta 793, 251–259.Google Scholar
  27. 27.
    S.D. Turley, J.M. Andersen and J.M. Dietschy (1981) J. Lipid Res. 23, 551–569.Google Scholar
  28. 28.
    M.D. Siperstein and V.M. Fagan (1964) H.P. Morris (1966) Cancer Res. 24, 1108–1115.Google Scholar
  29. 29.
    M.D. Siperstein, V.M. Fagan and H.P. Morris (1966) Cancer Res. 26, 7–11.PubMedGoogle Scholar
  30. 30.
    T.P. Van der Krift, J. Leunissen, T. Teerlink, G.P.H. van Heusden, A.J. Verkley and K.W.A. Wirtz (1985) Biochim. Biophys. Acta 812, 387–392.Google Scholar
  31. 31.
    H. Tsukada, Y. Mochizuki and M. Gotoh (1977) Adv. Exp. Med. Biol. 92, 331–362.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • K. W. A. Wirtz
    • 1
  • J. Westerman
    • 1
  • A. van Amerongen
    • 1
  • T. P. van der Krift
    • 1
  1. 1.Laboratory of BiochemistryState University of UtrechtTB UtrechtThe Netherlands

Personalised recommendations