Molecular Organization of Glycosphingolipids in Phosphatidylcholine Bilayers and Biological Membranes

  • T. E. Thompson
  • Y. Barenholz
  • R. E. Brown
  • M. Correa-Freire
  • W. W. Young
  • T. W. Tillack
Part of the NATO ASI Series book series (NSSA, volume 116)


Glycosphingolipids, in contrast to glycerol-based lipids, are relatively minor components of mammalian cell membranes. They are, however, confined to the external surface of the plasma membrane and in this surface may collectively be a major component (1–4). In some cell types very small amounts of these lipids have been found associated with Golgi membranes, their probable site of biosynthesis (1). Their location on the trans-cytoplasmic side of the plasma membrane causes them, together with glycosylated membrane proteins, to be the primary components of the cell to interact with the molecules and other cells of the immediate environment. Thus specific glycosphingolipids have been shown to serve as receptors for toxins, viruses and some hormones (2,5–11). They have long been known to act as antigenic determinants and to mediate immune responses (11–13). There is much evidence to suggest that glycosphingolipids play a role in cell-cell interaction and recognition (7). Alterations in the amounts and types of these lipids on the cell surface are very often associated with growth, differentiation, development, aging (7,14,15), and with oncogenic transformation (11,16). Although there is considerable information about the molecular structure of many glycosphingolipids, relatively little is known about the organization of molecules of this class in phospholipid bilayers and in the bilayers of biological membranes. It seems certain that their molecular organization is a critical parameter underlying many of the functions of glycosphingolipids (17).


Dipalmitoyl Phosphatidylcholine Bilayer Surface Fractional Transfer Neutral Glycosphingolipids Liquid Crystalline Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Dawson, in: “The Glycoconjugates II,” eds., M.I. Horwitz and W. Pigman, p. 225, New York: Academic Press (1978).Google Scholar
  2. 2.
    H.-A. Hansson, J. Holmgren and L. Svennerholm, Proc. Natl. Acad. Sci. USA 74: 3782 (1977).PubMedCrossRefGoogle Scholar
  3. 3.
    T.L. Steck and G. Dawson, J. Biol. Chem. 249: 2135 (1974).PubMedGoogle Scholar
  4. 4.
    W. Stoffel, R. Anderson and J. Stahl, Hoppe Seyler’s Z. Physiol. Chem. 356: 1123 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    F.B. Craves, B. Zaloc, L. Leybirs, N. Bauman and H.H. Loh, Science 207: 75 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    P.H. Fishman and R.O. Brady, Science 194: 906 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    S. Hakomori, Ann. Rev. Biochem. 50: 733 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    B. Maggio, F.A. Cumar and R. Caputto, Biochim. Biophys. Acta 650: 69 (1981).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Moss and M. Vaughan, Ann. Rev. Biochem. 48: 581 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    T.B. Rodgers and S.H. Snyder, J. Biol. Chem. 256: 240 (1981).Google Scholar
  11. 11.
    T. Yamakawa and Y. Nagai, Trends in Biochemical Sciences 3: 128 (1978).CrossRefGoogle Scholar
  12. 12.
    S. Hakomori, Adv. Cancer Res. 18: 265 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    M.I. Horwitz, in: “The Glycoconjugate II,” eds., M.I. Horwitz and W. Pigman, p. 387, New York: Academic Press (1978).Google Scholar
  14. 14.
    G.A. Ackerman, K.W. Wolken and F.B. Gelder, J. Histochem. Cytochem. 28: 1334 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    M. Martinez and A. Ballabriga, Brain Res. 29: 351 (1978).CrossRefGoogle Scholar
  16. 16.
    S. Hakomori, Biochim. Biophys. Acta (CR) 417: 55 (1975).Google Scholar
  17. 17.
    T.E. Thompson and T.W. Tillack, Ann. Rev. Biophys. Biophys. Chem. 14: 361 (1985).CrossRefGoogle Scholar
  18. 18.
    M.C. Correa-Freire, Y. Barenholz and T.E. Thompson, Biochemistry 21: 1244 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Correa-Freire, E. Freire, Y. Barenholz, R.L. Biltonen and T.E. Thompson, Biochemistry 18: 442 (1979).PubMedCrossRefGoogle Scholar
  20. 20.
    T.W. Tillack, M. Wong, M. Allietta and T.E. Thompson, Biochim. Biophys. Acta 691: 261 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    R.E. Brown, I.P. Sugar and T.E. Thompson, Biochemistry 24: 4082 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    T.E. Thompson, M. Allietta, R.E. Brown, M.L. Johnson and T.W. Tillack, Biochim. Biophys. Acta 817: 229 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    Y. Barenholz, E. Freire, T.E. Thompson, M.C. Correa-Freire, D. Bach and I. Miller, Biochemistry 22: 3497 (1983).CrossRefGoogle Scholar
  24. 24.
    B. Maggio, T. Ariga, J.M. Sturtevant and R.K. Yu, Biochim. Biophys. Acta 818: 1 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    M.J. Ruocco, G.G. Shipley and E. Oldfield, Biophys. J. 43: 91 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    L.O. Sillerud, D.E. Schafer, R.K. Yu, and W.H. Konigsberg J. Biol. Chem. 254: 10876 (1979).PubMedGoogle Scholar
  27. 27.
    H.J. Hinz, O. Korner and C. Nicolau, Biochim. Biophys. Acta 643: 557 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    M.R. Bunow and B. Bunow, Biophys. J. 27: 325 (1979).PubMedCrossRefGoogle Scholar
  29. 29.
    D. Bach, I.R. Miller and B-A. Sela, Biochim. Biophys. Acta 686: 233 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    B. Cestaro, G. Cervato, G. Di Silvestro, P. Sozzani and B. Berra, Ital. J. Biochem. 30: 429 (1981).Google Scholar
  31. 31.
    G. Duckwitz-Peterlein, G. Eilenberger and P. Overath, Biochim. Biophys. Acta 469: 311 (1977).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Frank, Y. Barenholz, D. Lichtenberg and T.E. Thompson, Biochemistry 22: 5647 (1983).CrossRefGoogle Scholar
  33. 33.
    B.R. Copeland and H.M. McConnell, Biochim. Biophys. Acta 599: 95 (1980).PubMedCrossRefGoogle Scholar
  34. 34.
    M.J. Janiak, D.M. Small and G.G. Shipley, Biochemistry 15: 4575 (1976).PubMedCrossRefGoogle Scholar
  35. 35.
    R. Krbecek, C. Gebhardt, H. Gruler and E. Sackmann, Biochim. Biophys. Acta 554: 1 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    E.J. Luna and H.M. McConnell, Biochim. Biophys. Acta 466: 381 (1977).PubMedCrossRefGoogle Scholar
  37. 37.
    E.J. Luna and H.M. McConnell, Biochim. Biophys. Acta 470: 303 (1977).PubMedCrossRefGoogle Scholar
  38. 38.
    P.H.J.T. Ververgaert, A.J. Verkleij, J.J. Verhoeven and P.F. Elbers, Biochim. Biophys. Acta 311: 651 (1973).PubMedCrossRefGoogle Scholar
  39. 39.
    M.S. Falkovitz, M. Seul, H.L. Frisch and H.M. McConnell, Proc. Natl. Acad. Sci. USA 79: 3918 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    K. Larsson, Chem. Phys. Lipids 20: 225 (1977).CrossRefGoogle Scholar
  41. 41.
    R.P. Rand, D. Chapman and K. Larsson, Biophys. J. 15: 1117 (1975).PubMedCrossRefGoogle Scholar
  42. 42.
    T. Uchida, Y. Nagai, Y. Kawasaki and N. Wakayama, Biochemistry 20: 162 (1981).PubMedCrossRefGoogle Scholar
  43. 43.
    P.M. Lee, N.V. Ketis, K.R. Barber and C.W.M. Grant, Biochim. Biophys. Acta 601: 202 (1980).Google Scholar
  44. 44.
    F.J. Sharom and C.W.M. Grant, Biochem. Biophys. Res. Comm. 74: 1039 (1977).PubMedCrossRefGoogle Scholar
  45. 45.
    F.J. Sharom and C.W.M. Grant, Biochem. Biophys. Acta 507: 280 (1978).PubMedCrossRefGoogle Scholar
  46. 46.
    T.W. Tillack, M. Allietta, R.E. Moran and W.W. Young, Jr., Biochim. Biophys. Acta 733: 15 (1983).PubMedCrossRefGoogle Scholar
  47. 47.
    C.G. Gahmberg and S. Hakomori, J. Biol. Chem. 246: 4311 (1973).Google Scholar
  48. 48.
    S. Hakomori, Vox Sang. 16: 478 (1969).PubMedCrossRefGoogle Scholar
  49. 49.
    M.R. Bunow and I.A. Levin, Biophys. J. 32: 1007 (1980).PubMedCrossRefGoogle Scholar
  50. 50.
    I.W. Levin, T.E. Thompson, Y. Barenholz and C. Huang, Biochemistry, in press (1985).Google Scholar
  51. 51.
    B. Maggio, T. Ariga, J.M. Sturtevant and R.K. Yu, Biochemistry 24: 1084 (1985).PubMedCrossRefGoogle Scholar
  52. 52.
    S.W. Hui, J.T. Mason and C. Huang, Biochemistry 23: 5570 (1984).PubMedCrossRefGoogle Scholar
  53. 53.
    S.A. Simon and T.J. McIntosh, Biochim. Biophys. Acta 773: 169 (1984).PubMedCrossRefGoogle Scholar
  54. 54.
    M. Corti, V. Degiorgio, R. Ghidoni, S. Sonnino and G. Tettamanti, Chem. Phys. Lipids 26: 225 (1980).PubMedCrossRefGoogle Scholar
  55. 55.
    H.C. Yohe, D.E. Roark and A. Rosenberg, J. Biol. Chem. 251: 7083 (1978).Google Scholar
  56. 56.
    Y. Barenholz, B. Ceastaro, D. Lichtenberg, E. Freire, T.E. Thompson and S. Gatt, in: “Structure and Functions of Gangliosides,” eds., L. Svennerholm, P. Mandel, H. Dreyfus and P.-F. Urban, p. 105, Plenum Press: New York (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • T. E. Thompson
    • 1
  • Y. Barenholz
    • 1
  • R. E. Brown
    • 1
  • M. Correa-Freire
    • 1
  • W. W. Young
    • 1
  • T. W. Tillack
    • 1
  1. 1.Departments of Biochemistry and PathologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations