Human Acid β-Glucosidase: Primary Structure of the Active Site

  • Tama Dinur
  • Karen M. Osiecki-Newman
  • Diane T. Fabbro
  • Gunter Legler
  • Shimon Gatt
  • Robert J. Desnick
  • Gregory A. Grabowski
Part of the NATO ASI Series book series (NSSA, volume 116)


Human acid β-glucosidase (β-Glc; EC; N-acyl-sphingosyl-1-0-β-D-glucoside: glucohydrolase), is the lysosomal enzyme that cleaves the β-glucosyl linkages in glucosyl ceramide (GC) and synthetic R-glucosides (1,2). This membrane-associated glycoprotein is a homomer whose mature glycosylated subunit has a molecular weight of about 67,000–73,000 (3–5). The enzyme is hydrophobic and requires detergents, negatively charged lipids and/or a “co-glucosidase” for optimal hydrolysis of GC or synthetic substrates (6–9). Detailed studies of the effects and interactions of a variety of enzyme effectors have indicated that the active site of the enzyme contains at least three domains with differing specificities. It has been proposed that these three domains may function in the binding and orientation of substrates and release of products (8,9). Defects of β-Glc function, processing and/or stability lead to the accumulation of GC and the resultant subtypes and variants of Gaucher disease, an inherited lysosomal storage disease (10–14). The most prevalent form of Gaucher disease, Type 1, occurs in about 1 in 2500 individuals of Ashkenazi Jewish descent (15).


Catalytic Site Gauche Disease Lysosomal Storage Disease Label Enzyme Gauche Disease Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Gatt, and M.M. Rapport, Isolation of β-galactosidase and 0-glucosidase from brain. Biochim. Biophys. Acta 113: 567–576 (1966).PubMedCrossRefGoogle Scholar
  2. 2.
    R.O. Brady, J.N. Kanfer, and D. Shapiro, The metabolism of glucocerebrosides. I. Purification and properties of d glucocerebroside-cleaving enzyme from spleen tissue. J. Biol. Chem. 240: 39–43 (1965).Google Scholar
  3. 3.
    F.S. Furbish, H.E. Blair, Y. Shiloach, P.G. Pentchev, and R.O. Brady, Enzyme replacement therapy in Gaucher’s disease: Large-scale purification of glucocerebrosidase suitable for human administration. Proc. Natl. Acad. Sci. USA 74: 3560–3563 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    P.M. Strasburg, J.A. Lowden, and D. Mahuran, Purification of glucosylceramide by affinity chromatography. Can. J. Biochem. 60: 1025–1031 (1982).CrossRefGoogle Scholar
  5. 5.
    G.A. Grabowski, and A. Dagan, Human lysosomal β-glucosidase: Purification by affinity chromatography. Anal. Biochem. 141: 267279 (1984).Google Scholar
  6. 6.
    S.L. Berent, and N.S. Radin, Mechanism of activation of glucocerebrosidase by co-β-glucosidase (glucosidase activator protein). Biochim. Biophys. Acta 664: 572–582 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Basu, R.H. Glew, L.B. Daniels, and L.S. Clark, Activators of spleen glucocerebrosidase from controls and patients with various forms of Gaucher’s disease. J. Biol. Chem. 259: 1714–1719 (1984).PubMedGoogle Scholar
  8. 8.
    S. Gatt, T. Dinur, R.J. Desnick, and G.A. Grabowski, Use of activators and inhibitors to define the properties of the active site of normal and Gaucher disease lysosomal 0-glucosidase. Enzyme 33: 103–119 (1985).Google Scholar
  9. 9.
    G.A. Grabowski, R.J. Desnick, J. Kruse, and S. Gatt, Human lysosomal 0-glucosidase: Kinetic characterization of the catalytic, aglycon and hydrophobic binding site. Arch. Biochem. Biophys. 231: 144–157 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    G.A. Grabowski, T. Dinur, K.M. Osiecki, J. Kruse, G. Legler, and S. Gatt, Gaucher disease types 1, 2 and 3: Differential mutations of the acid 0-glucosidase active site identified with conduritol B epoxide derivatives and sphingosine. Am. J. Hum. Genet. 37: 499–510 (1985).PubMedGoogle Scholar
  11. 11.
    G.A. r~abowski, J. Goldblatt, T. Dinur, J. Kruse, L. Svennerholm, S. Gatt, and R.J. Desnick, Genetic heterogeneity in Gaucher disease: Physicokinetic and immunologic studies of the residual enzyme in cultured fibroblasts from non-neuronopathic and neuronopathic patients. Am. J. Med. Genet. 21: 529–549 (1985).CrossRefGoogle Scholar
  12. 12.
    R.H. Glew, L.B. Daniels, L.S. Clark, and S.W. Royer, Enzymic differentiation of neurologic and nonneurologic forms of Gaucher’s disease. J. Neuropath. Exp. Neuro. 41: 630–641 (1982).Google Scholar
  13. 13.
    E.I. Ginns, R.O. Brady, S. Firruccello, C. Moore, S. Sorrell, R.S. Furbish, G.J. Murry, J. Tager, and J.A. Barranger, Mutations of glucocerebrosidase: Discrimination of neurologic and non-neurologic phenotypes of Gaucher disease. Proc. Natl. Acad. Sci. USA 79: 5607–5610 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    G.A. Grabowski, D. Fabbro, T. Dinur, K. Osiecki-Newman, J. Goldblatt, A. Feldman, T. Krulewski, G. Legler, S. Gatt, and R.J. Desnick, Genetic heterogeneity of Gaucher disease: enzymatic and immunologic studies, in: “Enzymes of Lipid Metabolism”, this volume.Google Scholar
  15. 15.
    R.J. Desnick, S. Gatt, and G.A. Grabowski, G.A., eds. “Gaucher Disease: A Century of Delineation and Research”, Alan R. Liss, New York (1982).Google Scholar
  16. 16.
    A. Quaroni, and G. Semenza, Partial amino acid sequences around the essential carboxylate in the active-sites of the intestinal sucrase-isomaltase complex. J. Biol. Chem. 251: 3250–3257 (1976).PubMedGoogle Scholar
  17. 17.
    A. Quaroni, E. Gershon, and G. Semenza, Affinity labeling of the active sites in the sucrase-isomaltase complex from small intestine. J. Biol. Chem. 249: 6424–6433 (1974).PubMedGoogle Scholar
  18. 18.
    E. Bause, and G. Legler, Isolation and structure of a tryptic glycopeptide from the active site of β-glucosidase A3 from Aspergillus wentii. Biochim. Biophys. Acta 626: 459–465 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    E. Bause, and G. Legler, Isolation and amino acid sequence of a hexadecapeptide from the active site of β-glucosidase A3 from Aspergillus wentii. Hoppe-Seyler Zeit. Physiol. Chem. 355: 438449 (1974).Google Scholar
  20. 20.
    J. Sorge, C. West, B. Westwood, and E. Beutler, Molecular cloning and nucleotide sequences of the human glucocerebrosidase gene. Proc. Natl. Acad. Sci. U.S.A. (1985, in press).Google Scholar
  21. 21.
    W. Wray, T. Boulikas, V.P. Wray, and R. Hancock, Silver staining of proteins in polyacrylamide gels. Anal. Biochem. 118: 197–203 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    T. Dinur, K.M. Osiecki, G. Legler, S. Gatt, R.J. Desnick, and G.A. Grabowski, Human acid β-glucosidase: Isolation and amino acid sequence of a peptide containing the catalytic site. Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  23. 23.
    G. Legler, Glucosidases, in: “Methods in Enzymology”, W.B. Jakoby, and M. Wilchek, eds.,—Academic Press, New York, Vol. 46, pp. 368–381 (1977).Google Scholar
  24. 24.
    U. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680–685 (1970).CrossRefGoogle Scholar
  25. 25.
    M.W. Hunkapiller, R.M. Hewick, W.J. Dreyer, and L.E. Hood, High-sensitivity sequencing with a gas-phase sequenator. in: “Methods in Enzymology,” C.H.W. Hirs, and S.N. TimashTf, eds., Academic Press, New York, Vol. 91., pp 399–413 (1983).Google Scholar
  26. 26.
    J. Kyte, and R.F. Doolittle, A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    A.J. Corrigan, and P.C. Huang, A basic microcomputer program for plotting the secondary structure of proteins. Comput. Prog. 15 (3): 163–168 (1982).CrossRefGoogle Scholar
  28. 28.
    G.R. Drapeau, The primary structure of staphylococcal protease. Can. J. Biochem. 56: 534–544 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Legler, and A. Harder, Amino acid sequence at the active site of β-glucosidase A from bitter almonds. Biochim. Biophys. Acta. 524: 102–108 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Tama Dinur
    • 1
    • 2
  • Karen M. Osiecki-Newman
    • 1
  • Diane T. Fabbro
    • 1
  • Gunter Legler
    • 3
  • Shimon Gatt
    • 2
  • Robert J. Desnick
    • 1
  • Gregory A. Grabowski
    • 1
  1. 1.Division of Medical Genetics, Department of PediatricsMount Sinai School of MedicineNew YorkUSA
  2. 2.Department of Membrane Biochemistry and NeurochemistryHebrew University-Hadassah Medical SchoolJerusalemIsrael
  3. 3.lnstitüt Für BiochemieUniversität KölnKölnGermany

Personalised recommendations