Advertisement

Inhibition of Pancreatic and Microbial Lipases by Proteins: Kinetic and Binding Studies

  • Y. Gargouri
  • G. Piéroni
  • C. Rivière
  • L. Sarda
  • R. Verger
Part of the NATO ASI Series book series (NSSA, volume 116)

Abstract

It has been established by many authors that bile salts are strong inhibitors of pancreatic (1,2) and microbial (3) lipases activity. Kinetic studies performed with emulsions of triacylglycerol as lipase substrate have shown that other amphiphiles such as synthetic detergents (4,5) or proteins (6–10) are also inhibitors of pancreatic lipase. With emulsified systems, it is difficult to assess the distribution of soluble versus adsorbed amphiphiles molecules. This prompted us to use the mono—layer technique based on surface pressure decrease consecutive to lipid film hydrolysis (8,9). Dicaprin was selected as substrate firstly to evaluate the influence of various proteins (β—lactoglobulin A, melittin, BSA, protein inhibiting lipase isolated from soybean (PIL) and ovalbumin) on the activity of pancreatic and microbial lipases, secondly to determine the amounts of radiolabeled enzyme and inhibitory protein bound to the lipid monolayer during lipolysis.

Keywords

Bile Salt Inhibitory Protein Pancreatic Lipase Film Transfer Synthetic Detergent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morgan, R.G.H. and Hoffman, N.F. (1971) Biochim. Biophys. Acta 248, 143–148.PubMedCrossRefGoogle Scholar
  2. 2.
    Vandermeers, A., Vandermeers-Piret, M.C., Rathé, J. and Christophe, J. (1975) FEBS Lett. 49, 334–337.PubMedCrossRefGoogle Scholar
  3. 3.
    Canioni, P., Julien, R., Rathelot, J. and Sarda, L. (1971) Lipids 12, 393–397.CrossRefGoogle Scholar
  4. 4.
    Gargouri, Y., Julien, R., Bois, A.G., Verger, R. and Sarda, L. (1983) J. Lipid Res. 24, 1336–1342.PubMedGoogle Scholar
  5. 5.
    Rathelot, J., Julien, R., Bosc-Bierne, I., Gargouri, Y., Canioni, P. and Sarda, L. (1981) Blochimie 63, 227–234.CrossRefGoogle Scholar
  6. 6.
    Borgström, B. and Erlanson, C. (1978) Gastroenterology 75, 382–386.Google Scholar
  7. 7.
    Brockerhoff, H. (1971) J. Biol. Chem. 246, 5828–5831.PubMedGoogle Scholar
  8. 8.
    Blackberg, L., Herneil. O., Bengtsson, G. and Olivecrona, T. (1979) J. Clin. Invest. 64, 1303–1308.PubMedCrossRefGoogle Scholar
  9. 9.
    Gargouri, Y., Julien, R., Sugihara, A., Verger, R. and Sarda, L. (1984) Biochem. Biophys. Acta 795, 326–331.PubMedCrossRefGoogle Scholar
  10. 10.
    Gargouri, Y., Julien, R., Pieroni, G., Verger, R. and Sarda, L. (1984) J. Lipid. Res. 25, 1214–1221.Google Scholar
  11. 11.
    Graham, D.E. and Phillips, M.C. (1979) J. Colloid Interface Sei. 70, 403–414.CrossRefGoogle Scholar
  12. 12.
    Graham, D.E. and Phillips, M.C. (1979) J. Colloid Interface Sei. 70, 415–426.CrossRefGoogle Scholar
  13. 13.
    Graham, D.E. and Phillips, M.C. (1979) J. Colloid Interface Sei. 70, 427–439.CrossRefGoogle Scholar
  14. 14.
    Macritchie, F. (1978) Adv. Protein Chem. 37, 283–326.CrossRefGoogle Scholar
  15. 15.
    Gargouri, Y., Pieroni, G., Rivière, C., Sugihara, A., Sarda, L. and Verger, R. (1985) J. Biol. Chem. 260, 2268–2273.PubMedGoogle Scholar
  16. 16.
    Gargouri, Y., Pieroni, G., Rivière, C., Sarda, L. and Verger, R. (Biochemistry, in press)Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Y. Gargouri
    • 1
  • G. Piéroni
    • 1
  • C. Rivière
    • 1
  • L. Sarda
    • 2
  • R. Verger
    • 1
  1. 1.Centre de Biochimie et de Biologie Moléculaire du CNRSMarseille Cedex 9France
  2. 2.Laboratoire de BiochimieFaculté des Sciences St-CharlesMarseilleFrance

Personalised recommendations