Biosynthesis and Pharmacology of PAF-Acether (Platelet-Activating Factor)

  • Ewa Ninio
  • Danièle Nunez
  • Marc Benhamou
  • Ruth Korth
  • Francine Joly
  • Jacques Benveniste
Part of the NATO ASI Series book series (NSSA, volume 116)


Paf-acether is formed by various organs like heart or kidney and proinflammatory cells such as neutrophils, monocytes, macrophages and platelets (reviewed 1,2). This mediator is synthesized in a two-step process : 1) deacylation of 1-0-alkyl-2-acyl-sn-glycero-3-phosphocholine by a phospholipase A2 activity yielding lyso paf-acether (1-0-alkyl-sn-glycero-3-phosphocholine),3,4 2) subsequent acetylation of the latter compound by an acetyltransferase (EC,6 Agents interfering with phospholipase A2 activity (EDTA, mepacrine, bromophenacyl bromide) inhibit paf-acether formation from various cell types.4,7 The acetyltransferase plays the key role in paf-acether biosynthesis in the majority of cells. Several fold activation of acetyltransferase has been reported in cells stimulated with specific secretagogues.8–12


Acetyltransferase Activity Washed Platelet Rabbit Platelet Mouse Mast Cell Bromophenacyl Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Roubin, M. Tencé, J.M. Mencia-Huerta, B. Arnoux, E. Ninio, and J. Benveniste, A chemically defined monokine: macrophage-derived platelet-activating factor, in “Lymphokines,” E. Pick, ed., Academic Press, New York, vol. 8, p. 249 (1983).Google Scholar
  2. 2.
    J. Benveniste, and B.B. Vargaftig, An ether-lipid with biological activities: Platelet-activating factor (PAF-acether), in “Ether-Lipids Biomedical Aspects,” H.K. Mangold, and F. Paltauf, eds, Academic Press, New York, p. 355 (1983).Google Scholar
  3. 3.
    J. Polonsky, M. Tencé, P. Varenne, B.C. Das, J. Lunel, and J. Benveniste, Release of 1–0-alkylglyceryl 3-phosphorylcholine, 0-deacetyl platelet-activating factor, from leukocytes: chemical ionization mass spectrometry of phospholipids, Proc. Natl. Acad. Sci. USA, 77: 7019 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    J.M. Mencia-Huerta, E. Ninio, R. Roubin, and J. Benveniste, Is platelet-activating factor (PAF-acether) synthesis by murine peritoneal cells (PC) a two-step process ? Agents Actions, 11: 556 (1982).CrossRefGoogle Scholar
  5. 5.
    R.L. Wykle, B. Malone, and F. Snyder, Enzymatic synthesis of 1-alkyl2-acetyl-sn-glycero-3-phosphocholine, a hypotensive and platelet-aggregating lipid, J. Biol. Chem., 255: 10256 (1980).PubMedGoogle Scholar
  6. 6.
    E. Ninio, J.M. Mencia-Huerta, F. Heymans, and J. Benveniste, Biosynthesis of platelet-activating factor (PAF-acether). I. Evidence for an acetyl-transferase activity in murine macrophages, Biochim. Biophys. Acta, 710: 23 (1983).Google Scholar
  7. 7.
    J. Benveniste, M. Chignard, J.P. Le Couedic, and B.B. Vargaftig, Biosynthesis of platelet-activating factor (PAF-acether). H. involvement of phospholipase A2 in the formation of PAF-acether and lyso PAF-acether from rabbit platelets, Thromb. Res., 25: 375 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    F. Alonso, M.G. Gil, M. Sanchez-Crespo, and J.M. Mato, Activation of 1-alkyl-2-lyso-glycero-3-phosphocholine acetyl-CoA transferase during phagocytosis in human polymorphonuclear leukocytes, J. Biol. Chem., 257: 3376 (1982).PubMedGoogle Scholar
  9. 9.
    E. Ninio, J.M. Mencia-Huerta, and J. Benveniste, Biosynthesis of platelet-activating factor (Paf-acether). V. Enhancement of acetyltransferase activity in murine peritoneal cells by the calcium ionophore A 23187. Biochim. Biophys. Acta, 751: 298 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    T.-c. Lee, B. Malone, S.I. Wasserman, V. Fitzgerald, and F. Snyder, Activities of enzymes that metabolize platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine) in neutrophils and eosinophils from humans and the effect of a calcium ionophore. Biochem. Biophys. Res. Comm., 105: 3303 (1982).Google Scholar
  11. 11.
    D.H. Albert, and F. Snyder, Biosynthesis of 1-alkyl-2-acetyl-snglycero-3-phosphocholine (platelet-activating factor) from 1-alkyl2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages, J. Biol. Chem., 258–97 (1983).Google Scholar
  12. 12.
    E. Jouvin-Marche, E. Ninio, G. Beaurain, M. Tencé, P. Niaudet, and J. Benveniste, Biosynthesis of paf-acether (platelet-activating factor). VII. Precursors of paf-acether and acetyl-transferase activity in human leukocytes, J. Immunol., 133: 892 (1984).PubMedGoogle Scholar
  13. 13.
    E. Razin, C. Cordon-Cardo, and R.A. Good, Growth of a pure population of mouse mast cells in vitro with conditioned medium derived from concanavalin A-stimulated splenocytes, Proc. Natl. Acad. Sci. USA, 78: 2559 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    J.W. Schrader, S.J. Lewis, I. Clark-Lewis, and J.G. Culvenor, The persisting (P) cell: histamine content, regulation by a T cell-derived factor, origin from a bone marrow precursor, and relationship to mast cells, Proc. Natl. Acad. Sci. USA, 78: 323 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    G. Tertian, Y.P. Yung, D. Guy-Grand, and M.A.S. Moore, Long-term in vitro culture of murine mast cells. I. Description of a growth factor dependent culture technique, J. Immunol., 127: 788 (1981).PubMedGoogle Scholar
  16. 16.
    A.R. Sterk, and T. Ishizaka, Binding properties of IgE receptors on normal mouse mast cells, J. Immunol., 128: 838 (1982).PubMedGoogle Scholar
  17. 17.
    J.M. Mencia-Huerta, R.A. Lewis, E. Razin, and K.F. Austen, Antigen-initiated release of platelet-activating factor (paf-acether) from mouse bone marrow-derived mast cells sensitized with monoclonal IgE, J. Immunol., 131: 2958 (1983).PubMedGoogle Scholar
  18. 18.
    E. Razin, R.L. Stevens, F. Akiyama, K. Schmid, and R.F. Austen, Culture from mouse bone marrow of a subclass of mast cells possessing a distinct chondroitin sulfate proteoglycan with glycosaminoglycan rich in N-acetylgalactosamine-4,6-disulfate, J. Biol. Chem., 257: 7229 (1982).PubMedGoogle Scholar
  19. 19.
    J.M. Mencia-Huerta, E. Razin, E. Ringel, E.J. Corey, D. Hoover, K.F. Austen, and R.A. Lewis, Immunologic and ionophore-induced generation of leukotriene B4 from mouse bone marrow-derived mast cells, J. Immunol., 130: 1885 (1983).PubMedGoogle Scholar
  20. 20.
    P. Fracker, and J. Speck Jr, Protein and cell membrane iodinations with a sparingly soluble chloroaide, 1,3,4,6-tetrachloro-3a,6adiphenylglycoluril, Biochem. Biophys. Res. Comm., 80: 849 (1978).CrossRefGoogle Scholar
  21. 21.
    J. Benveniste, P.M. Henson, and C.G. Cochrane, Leukocyte-dependent histamine release from rabbit platelets: the role of IgE, basophils and a platelet-activating factor, J. Exp. Med., 136: 1356 (1972).PubMedCrossRefGoogle Scholar
  22. 22.
    J.P. Cazenave, J. Benveniste, and J.F. Mustard, Aggregation of rabbit platelets by platelet-activating factor is independent of the release reaction and the arachidonate pathway and inhibited by membrane-active drugs, Lab. Invest., 41: 275 (1979).PubMedGoogle Scholar
  23. 23.
    W. Renooij, and F. Snyder, Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor and a hypotensive lipid) by choline-phosphotransferase in various rat tissues, Biochim. Biophys. Acta, 663: 545 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    E. Pirotzky, E. Ninio, J. Bidault, A. Pfister, and J. Benveniste, Biosynthesis of Paf-acether. VI. Precursor of Paf-acether and acetyltransferase activity in isolated rat kidney cells. Lab. Invest., 51: 567 (1984).PubMedGoogle Scholar
  25. 25.
    B. Malone, T.-c. Lee, and F. Snyder. Inactivation of platelet-activating factor (PAF) by rabbit platelets: Lyso PAF as a key intermediate with phosphatidylcholine as the source of arachidonic acid in its conversion to a tetraenoic acylated product, J. Biol. Chem., 260: 1531 (1985).Google Scholar
  26. 26.
    B.B. Vargaftig, M. Chignard, and J. Benveniste. Present concepts on the mechanisms of platelet aggregation, Biochem. Pharmacol., 30: 263 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    B.B. Vargaftig, M. Chignard, J. Benveniste, J. Lefort, and F. Wal, Background and present status of research on platelet-activating factor (Paf-acether), Ann. N.Y. Acad. Sci., 370: 119 (1981).PubMedCrossRefGoogle Scholar
  28. 28.
    R.N. Pinckard, L. McManus, M. Halonen, and D.J. Hanahan, Acetylglyceryl ether phosphorylcholine: platelet-activating factor, Int. Archs Allergy Appl. Immun., 66: 127 (1981).CrossRefGoogle Scholar
  29. 29.
    F.H. Valone, E. Coles, V.R. Reinhold, And E.J. Goetzl, Specific binding of phospholipid platelet-activating factor by human platelets, J. Immunol, 129: 1637 (1982).PubMedGoogle Scholar
  30. 30.
    E. Kloprogge, and J.W. Akkerman, Binding kinetics of paf-acether (1–0-alkyl-2-acetyl-sn-3-phosphocholine) to intact human platelets, Biochem. J., 223: 901 (1984).PubMedGoogle Scholar
  31. 31.
    F.H. Valone, and E.J. Goetzl, Specific binding by human polymorphonuclear leukoytes of the immunological mediator 1–0hexadecyl/octadecyl-2-acetyl-sn-glycerol-3-phosphorylcholine, Immunology, 48: 141 (1983).PubMedGoogle Scholar
  32. 32.
    S.B. Hwang, M.H. Lam, and T.Y. Shen, Specific binding sites for platelet activating factor in human lung tissues, Biochem. Biophys. Res. Comm., 128: 972 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    Z.I. Terashita, S. Tsushima, A.Y. Yoshioka, H. Nomura, Y. Inada, and K. Nishikawa, CV 3988, a specific antagonist for platelet-activating factor (PAF), Life Sci., 32: 1975 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    T.Y. Shen, S.B. Hwang, N.M. Chang, T.W. Doebber, M.H.T. Lam, M.S. Wu, X. Wang, G.Q. Han, and R.Z. Li, Characterization of a platelet-activating factor antagonist isolated from Haifenteng (Piper futokadsura): specific inhibition of in vitro and in vivo platelet-activating factor-induced effects, Proc. Natl. Acad. Sci. USA, 82: 672 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    P. Braquet, Treatment and prevention of paf-acether-induced sickness by a new series of highly specific inhibitors, G.B. Patent 8: 418 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Ewa Ninio
    • 1
  • Danièle Nunez
    • 1
  • Marc Benhamou
    • 1
  • Ruth Korth
    • 1
  • Francine Joly
    • 1
  • Jacques Benveniste
    • 1
  1. 1.INSERM U.200Université Paris-SudClamartFrance

Personalised recommendations