Advertisement

The Interaction of Pancreatic Phospholipase A2 with Negatively Charged Substrates — Application: The Transformation of Soluble Phospholipase A2 into a Highly Penetrating “Membrane-Bound” Form

  • G. H. de Haas
  • A. J. Slotboom
  • M. G. van Oort
  • F. van der Wiele
  • W. Atsma
  • M. van Linde
  • B. Roelofsen
Part of the NATO ASI Series book series (NSSA, volume 116)

Summary

This study deals with some kinetic properties of porcine pancreatic phospholipase A2 (PLA2) acting on neutral and anionic substrates. Short—chain diacylglycerosulfates possess a much higher affinity to the enzyme than the corresponding lecithins. At alkaline pH, micellar solutions of the negatively charged sulfates are hydrolyzed ten times faster than the zwitterionic lecithins. With both substrate classes, maximal enzymatic activity is always found in multimolecular aggregates containing several PLA2 molecules and a number of substrate monomers. The formation of these “high molecular weight” complexes, however, is different for lecithins and the anionic sulfates: with neutral phosphatidylcholine, the enzyme interacts with preformed micelles at substrate concentrations above the CMC. The zymogen has no affinity for these zwitterionic interfaces. The anionic lipids, however, induce enzyme aggregation already at substrate concentrations well below the CMC and the resulting complexes contain a premicellar aggregate of substrate monomers. In these rather unstable aggregates PLA2 displays very high enzymatic activity. Although the zymogen is also able to form similar high molecular weight complexes, this protein does not become activated.

These differences in the interaction of pancreatic PLA2 with neutral and negatively-charged substrates are attributed to the presence of two cationic amino acids in the hydrophobic lipid binding domain: Arg-6 and Lys-116. Specific acylation of Lys-116 with a long-chain fatty acid enables the enzyme to penetrate densily-packed monolayers and to attack liological membranes.

Keywords

Anionic Lipid Detergent Concentration Pancreatic Phospholipase Pancreatic PLA2 Naja Naja 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.M. Verheij, A.J. Slotboom, and G.H. de Haas, Structure and function of phospholipase A2, in: “Reviews of Physiol. Biochem. Pharmacol.”, Vol. 91, pp. 91–203, R.H. Adrian et al., eds., Springer-Verlag, Berlin (1981).Google Scholar
  2. 2.
    A.J. Slotboom, H.M. Verheij, and G.H. de Haas, On the mechanism of phospholipase A2, in: “Phospholipids: New Biochemistry”, Vol. 4, pp. 359–434, J.N. Hawthorne and G.B. Ansell, eds., Elsevier Biomedical Press, Amsterdam (1982).Google Scholar
  3. 3.
    J.J. Volwerk and G.H. de Haas, Pancreatic phospholipase A2: A model for membrane-bound enzymes? in: “Lipid-Protein Interactions”, Vol. 1, pp. 69–149, P.C. Jost and O.H. Griffith, eds., Wiley, New York (1982).Google Scholar
  4. 4.
    P.S. de Araujo, M.Y. Rosseneu, J.M.H. Kremer, E.J.J. van Zoelen, and G.H. de Haas, Structure and thermodynamic properties of the complexes between phospholipase A2 and lipid micelles, Biochemistry 18: 580–586 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    J.D.R. Hille, G.M. Donné-Op den Kelder, P. Sauve, G.H. de Haas, and M.R. Egmond, Physico-chemical studies on the interaction of pancreatic phospholipase A2 with a micellar substrate analog, Biochemistry 20: 4068–4073 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    B.W. Dijkstra, K.H. Kalk, W.G.J. Hol, and J. Drenth, Structure of bovine pancreatic phospholipase A2 at 1.7 X resolution, J. Mol. Biol. 147: 97–123 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    G.J.M. van Scharrenburg, W.C. Puijk, M.R. Egmond, G.H. de Haas, and A.J. Slotboom, Semisynthesis of phospholipase A2. Preparation and properties of [Arg6] bovine pancreatic phospholipase A2, Biochemistry 20: 1584–1591 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    J.A.F. Op den Kamp, J. de Gier, and L.L.M. van Deenen, Hydrolysis of phosphatidylcholine liposomes by pancreatic phospholipase A2 at the transition temperature, Biochim. Biophys. Acta 345: 253–256 (1974).CrossRefGoogle Scholar
  9. 9.
    M.K. Jain, M.R. Egmond, H.M. Verheij, R. Apitz-Castro, R. Dijkman, and G.H. de Haas, Interaction of phospholipase A2 and phospholipid bilayers, Biochim. Biophys. Acta 688: 341–348 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    G. Zografi, R. Verger, and G.H. de Haas, Kinetic analysis of the hydrolysis of lecithin monolayers by phospholipase A, Chem. Phys. Lipids 7: 185–206 (1971).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Roelofsen, R.F.A. Zwaal, P. Comfurius, C.B. Woodward, and L.L.M. van Deenen, Action of pure phospholipase A2 and phospholipase C on human erythrocytes and ghosts, Biochim. Biophys. Acta 241: 925–929 (1971).PubMedCrossRefGoogle Scholar
  12. 12.
    R.F.A. Zwaal, B. Roelofsen, P. Comfurius, and L.L.M. van Deenen, Organization of phospholipids in human red cell membranes as detected by the action of various purified phospholipases, Biochim. Biophys. Acta 406: 83–96 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Verger, M.C.E. Mieras, and G.H. de Haas, Action of phospholipase A2 at interfaces, J. Biol. Chem. 248: 4023–4034 (1973).PubMedGoogle Scholar
  14. 14.
    R.A. Demel, W.S.M. Geurts van Kessel, R.F.A. Zwaal, B. Roelofsen, and L.L.M. van Deenen, Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers, Biochim. Biophys. Acta 106: 97–107 (1975).Google Scholar
  15. 15.
    B. Roelofsen, M. Sibenius Trip, H.M. Verheij, and J.L. Zevenbergen, The action of cobra venom phospholipase A2 isoenzymes toward intact human erythrocytes, Biochim. Biophys. Acta 600: 1012–1017 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    J.H. van Eijk, H.M. Verheij, R. Dijkman, and G.H. de Haas, Interaction of phospholipase A2 from Naja melanoleuca snake venom with monomeric substrate analogs. Activation of the enzyme by protein-protein or lipid-protein interactions? Eur. J. Biochem. 132: 183–188 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    J.D.R. Hille, M.R. Egmond, R. Dijkman, M.G. van Oort, P. Sauve, and G.H. de Haas, Unusual kinetic behaviour of porcine pancreatic (pro)phospholipase Aton negatively charged substrates at submicellar concentrations, Biochemistry 22: 5353–5358 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Verger, Pancreatic lipases, in: “Lipases”, pp. 83–150, B. Borgström and H.L. Brockman, eds., Elsevier, Amsterdam (1984).Google Scholar
  19. 19.
    E.A. Dennis, Phospholipases, in: “The Enzymes”, Vol. XVI, pp. 307–353, Academic Press, New York (1983).Google Scholar
  20. 20.
    P.H. Poon and M.A. Wells, Physical studies of egg phosphatidylcholine in diethyl ether-water systems, Biochemistry 13: 4928–4936 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    M.A. Wells, The nature of water inside phosphatidylcholine micelles in diethyl ether, Biochemistry 13: 4937–4942 (1974).PubMedCrossRefGoogle Scholar
  22. 22.
    L. Sarda and P. Desnuelle, Action de la lipase pancréatique sur les esters en émulsion, Biochim. Biophys. Acta 30: 513–521 (1958).PubMedCrossRefGoogle Scholar
  23. 23.
    R.A. Deems, B.R. Eaton, and E.A. Dennis, Kinetic analysis of phospholipase A2 activity toward mixed micelles and its implication for the study of lipolytic enzymes, J. Biol. Chem. 250: 9013–9020 (1975).PubMedGoogle Scholar
  24. 24.
    B.W. Dijkstra, R. Renetseder, K.H. Kalk, W.G.J. Hol, and O.J. Drenth, Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2, J. Mol. Biol. 168: 163–179 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Keith, D.S. Feldman, S. Deganello, J. Glick, K.B. Ward, E.O. Jones, and P.B. Sigler, The 2.5 A crystal structure of a dimeric phospholipase A2 from the venom of Crotalus atrox, J. Biol. Chem. 256: 8602–8607 (1981).PubMedGoogle Scholar
  26. 26.
    M.A. Wells, Spectral perturbation of Crotalus adamanteus phospholipase A2 induced by divalent cation binding, Biochemistry 12: 1080–1085 (1973).PubMedCrossRefGoogle Scholar
  27. 27.
    M.A. Wells, Effects of chemical modification on the activity of Crotalus adamanteus phospholipase A2. Evidence for an essential amino group, Biochemistry 12: 1086–1093 (1973).PubMedCrossRefGoogle Scholar
  28. 28.
    C.M. Smith and M.A. Wells, A further examination of the active form of Crotalus adamanteus phospholipase A2, Biochim. Biophys. Acta 663: 687–694 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    M.F. Roberts, R.A. Deems, T.C. Mincey, and E.A. Dennis, Chemical modification of the histidine residue in phospholipase A2 (Naja naja naja): a case of half site reactivity, J. Biol. Chem. 252: 2405–2411 (1977).PubMedGoogle Scholar
  30. 30.
    A.A. Mishin, V.L. D’yakov, and V.K. Antonov, Activation of pancreatic lipase by detergent. II. Hydrolysis of specific substrates, Bioorgh. Khim. 8: 462–469 (1982).Google Scholar
  31. 31.
    J.J. Volwerk, P.C. Jost, G.H. de Haas, and O.H. Griffith, Evidence that the zymogen of phospholipase A2 binds to a negatively charged lipid-water interface, Chem. Phys. Lipids 36: 101–110 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    W.A. Pieterson, J.C. Vidal, J.J. Volwerk, and G.H. de Haas, Zymogen-catalysed hydrolysis of monomeric substrates and the presence of a recognition site for lipid-water interfaces in phospholipase A2, Biochemistry 13: 1455–1460 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    J.J. Volwerk, A.G.R. Dedieu, H.M. Verheij, R. Dijkman, and G.H. de Haas, Hydrolysis of monomeric substrates by porcine pancreatic (pro)phospholipase A2. The use of a spectrophotometric assay, Recl. Tray. Chim. Pays-Bas 98: 214–220 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. H. de Haas
    • 1
  • A. J. Slotboom
    • 1
  • M. G. van Oort
    • 1
  • F. van der Wiele
    • 1
  • W. Atsma
    • 1
  • M. van Linde
    • 1
  • B. Roelofsen
    • 1
  1. 1.Laboratory of BiochemistryState University of UtrechtUtrechtThe Netherlands

Personalised recommendations