Advertisement

The Role of Tyrosine Phosphorylation in the Regulation of Insulin and Insulin-Like Growth Factor-I Receptor Kinase Activities

  • Kin-Tak Yu
  • Michael P. Czech
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 205)

Abstract

Insulin is a polypeptide hormone which plays a crucial role in regulating cellular metabolism and growth. Although both the acute and long-term effects of insulin in a variety of cell types have been widely examined and reported, the molecular mechanism or mechanisms mediating the actions of this hormone are still unknown. Due to the diverse effects of insulin on cellular functions, it is quite possible that a multitude of pathways may be involved in the signalling mechanism of this hormone. In spite of the possible existence of such an intricate network of signalling pathways, it is reasonable to expect that they may originate from the interaction of insulin with its cell approach to elucidate the molecular investigate events which may occur insulin to its receptor. surface receptor. Thus, a logical mechanism of insulin action is to immediately after the binding of insulin to its receptor.

Keywords

Insulin Receptor Tyrosine Phosphorylation Receptor Kinase Tyrosine Kinase Activity Human Insulin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avruch, J., Nemenoff, R. A., Blackshear, P. J., Pierce, M. W., and Osathanondh, R., 1982, Insulin-stimulated tyrosine phosphorylation of the insulin receptor in detergent extracts of human placental membranes, J. Biol. Chem., 257: 15162–15166.PubMedGoogle Scholar
  2. Bertics, P. J., and Gill, G. N., 1985, Self-phosphorylation enhances the protein-tyrosine kinase activity of the epidermal growth factor receptor, J. Biol. Chem., 260: 14642–14647.PubMedGoogle Scholar
  3. Bhaumick, B., Bala, R. M., and Hollenberg, M. D., 1981, Somatomedin receptor of human placenta: Solubilization, photolabeling, partial purification and comparison with insulin receptor, Proc. Natl. Acad. Sci. USA, 78: 4279–4283.PubMedCrossRefGoogle Scholar
  4. Chernausek, S. D., Jacobs, S., and Van Wyk, J. J., 1981, Structural similarities between human receptors for somatomedin C and insulin. Analysis by affinity labeling, Biochemistry, 20: 7345–7550.PubMedCrossRefGoogle Scholar
  5. Ebina, Y., Ellis, L., Jarnagin, K. G., Edery, M., Graf, L., Clauser, E., Ou, J. H., Mariarz, F., Kan, Y. W., Goldfine, I. D., Roth, R. A., and Rutter, W. J., 1985, The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling, Cell, 40: 747–758.PubMedCrossRefGoogle Scholar
  6. Fujita-Yamaguchi, Y., Choi, S., Sakamoto, Y., and Itakura, K., 1983, Purification of insulin receptor with full binding activity, J. Biol. Chem., 258: 5045–5049.PubMedGoogle Scholar
  7. Fujita-Yamaguchi, Y., 1984, Characterization of purified insulin receptor subunits, J. Biol. Chem., 259: 1206–1211.PubMedGoogle Scholar
  8. Harrison, L. C., and Itin, A., 1980, Purification of the insulin receptor from human placenta by chromatography on immobilized wheat germ lectin and receptor antibody, J. Biol. Chem., 255: 12066–12072.PubMedGoogle Scholar
  9. Hedo, J. A., and Simpson, I. A., 1984, Internalization of insulin receptors in the isolated rat adipose cell, J. Biol. Chem., 259: 11083–11089.PubMedGoogle Scholar
  10. Hunter, T., and Cooper, J. A., 1985, Protein tyrosine kinase, Ann. Rev. Biochem., 54: 897–930.PubMedCrossRefGoogle Scholar
  11. Jacobs, S., Shechter, Y., Bissell, K. and Cuatrecasas, P., 1977, Purification and properties of insulin receptors from rat liver membranes, Biochem. Biophys. Res. Commun., 77: 981–988.Google Scholar
  12. Jacobs, S., Hazum, E., and Cuatrecasas, P., 1980, The subunit structure of rat liver insulin receptor, J. Biol. Chem., 255: 6937–6940.PubMedGoogle Scholar
  13. Jacobs, S., Kull, F. C., Jr., Earp, H. S., Svoboda, M. E., Van Wyk, J. J., and Cuatrecasas, P., 1983, Somatomedin C stimulates the phosphorylation of the 8 subunit of its own receptor, J. Biol. Chem., 258: 9581–9584.PubMedGoogle Scholar
  14. Kasuga, M., Van Obberghen, E., Nissley, S. P., and Rechler, M. M., 1981, Demonstration of the subtypes of insulin-like growth factor receptors by affinity cross-linking, J. Biol. Chem., 256: 5305–5308.PubMedGoogle Scholar
  15. Kasuga, M., Karlsson, F. A., and Kahn, C. R., 1982a, Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor, Science, 215: 185–187.CrossRefGoogle Scholar
  16. Kasuga, M., Zick, Y., Blithe, D. L., Karlsson, F. A. Haring, H. U., and Kahn, C. R., 1982b, Insulin stimulation of phosphorylation of the subunit of the insulin receptor, J. Biol. Chem., 257: 9891–9894.Google Scholar
  17. Kasuga, M., Hedo, J. A., Yamada, K. M., and Kahn, C. R., 1982c, The structure of insulin receptor and its subunits, J. Biol. Chem., 257: 10392–10399.Google Scholar
  18. Kasuga, M., Van Obberghen, E., Nissley, S. P. and Rechler, M. M., 1982d, Structure of the insulin-like growth factor receptor in chicken embryo fibroblast, Proc. Natl. Acad. Sci. USA, 79: 1864–1868.CrossRefGoogle Scholar
  19. Kasuga, M., Fujita-Yamaguchi, Y., Blithe, D. L., and Kahn, C. R., 1983a, Tyrosine-specific protein kinase activity is associated with the purified insulin receptor, Proc. Natl. Acad. Sci. USA, 80: 2137–2141.CrossRefGoogle Scholar
  20. Kasuga, M., Fujita-Yamaguchi, Y., Blithe, D. L., White, M. F., and Kahn, C. R., 1983b, Characterization of the insulin receptor kinase purified from human placental membranes, J. Biol. Chem., 258: 10973–10980.Google Scholar
  21. King, G. L., Kahn, C. R., Rechler, M. M., and Nissley, S. P., 1980, Direct demonstration of separate receptors for growth and metabolic activities of insulin and multiplication-stimulating activity (an insulin-like growth factor) using antibodies to the insulin receptor, J. Clin. Invest., 66: 130–140.PubMedCrossRefGoogle Scholar
  22. Kull, F. C., Jacobs, S., Su, Y. F., Svoboda, M. E., Van Wyk, J. J., and Cuatrecasas, P., 1983, Monoclonal antibodies to receptors for insulin and somatomedin-C, J. Biol. Chem., 258: 6561–6566.PubMedGoogle Scholar
  23. Massague, J., Pilch, P. F., and Czech, 1980, Electrophoretic resolution of three major insulin receptor structures with unique stoichiometries, Proc. Natl. Acad. Sci. USA, 77: 7137–7141.PubMedCrossRefGoogle Scholar
  24. Massague, J., Pilch, P. F., and Czech, 1981, A unique proteolytic cleavage site on the 8 subunit of the insulin receptor, J. Biol. Chem., 256: 3182–3190.PubMedGoogle Scholar
  25. Massague, J., and Czech, M. P., 1982a, Role of disulfides in the subunit structures of the insulin receptor, J. Biol. Chem., 257: 6729–6738.Google Scholar
  26. Massague, J., and Czech, M. P., 1982b, The subunit structures of two distinct receptors for insulin-like growth factor I and II and their relationship to the insulin receptor, J. Biol. Chem., 257: 5038–5045.Google Scholar
  27. Massague, J., Blinderman, L. A., and Czech, M. P., 1982c, The high affinity insulin receptor mediates growth stimulation in rat hepatoma cells, J. Biol. Chem., 257: 13958–13963.Google Scholar
  28. Nemenoff, R. A., Kwok, Y. C., Shulman, G. I., Blackshear, P. J., Osathanondh, R., and Avruch, J., 1984, Insulin-stimulated tyrosine protein kinase: Characterization and relation to the insulin receptor, J. Biol. Chem., 259: 5058–5065.PubMedGoogle Scholar
  29. Petruzzelli, L. M., Ganguly, S., Smith, C. J., Cobb, M. H., Rubin, C. S., and Rosen, O. M., 1982, Insulin activates a tyrosine-specific protein kinase in extracts of 3T3–L1 adipocytes and human placenta, Proc. Natl. Acad. Sci. USA 79: 6792–6796.PubMedCrossRefGoogle Scholar
  30. Petruzzelli, L. M., Herrera, R., and Rosen, O. M., 1984, Insulin receptor is an insulin-dependent tyrosine protein kinase: Copurification of insulin-binding activity and protein kinase activity to homogeneity from human placenta, Proc. Natl. Acad. Sci. USA, 81: 3327–3331.PubMedCrossRefGoogle Scholar
  31. Pilch, P. F., and Czech, M. P., 1979, Interaction of cross-linking agents with the insulin effector system isolated fat cells: Covalent linkage of 125I-insulin to a plasma membrane receptor protein of 140,000 daltons, J. Biol. Chem., 254: 3375–3381.PubMedGoogle Scholar
  32. Pilch, P. F., and Czech, M. P., 1980, The subunit structure of the high affinity insulin receptor, J. Biol. Chem., 255: 1722–1731.PubMedGoogle Scholar
  33. Rosen, O. M., Herrera, R., Olowe, Y., Petruzzelli, L. M., and Cobb, M., 1983, Phosphorylation activates the insulin receptor tyrosine protein kinase, Proc. Natl. Acad. Sci. USA, 80: 3237–3240.PubMedCrossRefGoogle Scholar
  34. Roth, R. A., and Cassell, D. J., 1983, Insulin receptor: Evidence that it is a protein kinase, Science, 219: 299–301.PubMedCrossRefGoogle Scholar
  35. Rubin, J. B., Shia, M. A., and Pilch, P. F., 1983, Stimulation of tyrosine specific phosphorylation in vitro by insulin-like growth factor, Nature (London), 305: 438–440.CrossRefGoogle Scholar
  36. Sasaki, N., Rees-Jones, R. W., Zick, Y., Nissley, S. P., and Rechler, M. M., 1985, Characterization of insulin-like growth factor I-stimulated tyrosine kinase activity associated with the 8-subunit of type I insulin-like growth factor receptors of rat liver cells, J. Biol. Chem., 260: 9793–9804.PubMedGoogle Scholar
  37. Schmid, C. H., Steiner, T. H., and Froesch, E. R., 1983, Preferential enhancement of myoblast differentiation by insulin-like growth factors, FEBS Lett., 161: 117–121.PubMedCrossRefGoogle Scholar
  38. Shia, M. A., and Pilch, P. F., 1983, The 8 subunit of the insulin receptor is an insulin-activated protein kinase, Biochemistry, 22:717–721.PubMedCrossRefGoogle Scholar
  39. Shia, M. A., Rubin, J. B., and Pilch, P. F., 1983, The insulin receptor protein kinase. J. Biol. Chem. 258:14450–14455.PubMedGoogle Scholar
  40. Shia, M. A., Rubin, J. B., and Pilch, P. F., 1983, The insulin receptor protein kinase. J. Biol. Chem. 258:14450–14455.PubMedGoogle Scholar
  41. Stadtmauer, L. A., and Rosen, O. M., 1983, Phosphorylation of exogenous substrates by the insulin receptor-associated protein kinase, J. Biol. Chem., 258: 6682–6685.PubMedGoogle Scholar
  42. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J., 1985, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature, 313: 756–761.PubMedCrossRefGoogle Scholar
  43. Van Obberghen, E., Rossi, B., Kowalski, A., Gaaaauu, H., and Ponzio, G., 1983, Receptor-mediated phosphorylation of the hepatic insulin receptor: Evidence that the Mr-95,000 receptor subunit is its own kinase, Proc. Natl. Acad. Sci. USA, 80:945–949.PubMedCrossRefGoogle Scholar
  44. Verspohl, E. J., Roth, R. A., Vigneri, R., and Goldfine, I. D., 1984, Dual regulation of glycogen metabolism by insulin and insulin-like growth factors in human hepatoma cells (HEP-G2), J. Clin. Invest., 74: 1436–1443.PubMedCrossRefGoogle Scholar
  45. White, M. F., Haring, H. U., Kasuga, M., and Kahn, C. R., 1984, Kinetic properties and sites of autophosphorylation of the partially purified insulin receptor from hepatoma cells, J. Biol. Chem., 259: 255–264.PubMedGoogle Scholar
  46. White, M. F., Takayama, S., and Kahn, C. R., 1985, Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro, J. Biol. Chem., 260: 9470–9478.PubMedGoogle Scholar
  47. Yu, K. T., and Czech, M. P., 1984a, The type I insulin-like growth factor receptor mediates the rapid effects of multiplication-stimulating activity on membrane transport systems in rat soleus muscle, J. Biol. Chem., 259: 3090–3095.Google Scholar
  48. Yu, K. T., and Czech, M. P., 1984b, Tyrosine phosphorylation of the insulin receptor subunit activates the receptor-associated tyrosine kinase activity, J. Biol. Chem., 259: 5277–5286.Google Scholar
  49. Yu, K. T., Werth, D. K., Pastan, I. H., and Czech, M. P., 1985, Src kinase catalyzes the phosphorylation and activation of the insulin receptor kinase, J. Biol. Chem., 260: 5838–5846.PubMedGoogle Scholar
  50. Yu, K. T., Werth, D. K., Pastan, I. H., and Czech, M. P., 1985, Src kinase catalyzes the phosphorylation and activation of the insulin receptor kinase, J. Biol. Chem., 260: 5838–5846.PubMedGoogle Scholar
  51. Yu, K. T., Werth, D. K., Pastan, I. H., and Czech, M. P., 1985, Src kinase catalyzes the phosphorylation and activation of the insulin receptor kinase, J. Biol. Chem., 260: 5838–5846.PubMedGoogle Scholar
  52. Zapf, J., Schoenle, E., and Froesch, E. R., 1978, Insulin-like growth factor I and II: Some biological actions and receptor binding characteristics of two purified constituents of nonsuppressible insulin-like activity of human serum, Eur. J. Biochem., 87: 285–296.PubMedCrossRefGoogle Scholar
  53. Zick, Y., Kasuga, M., Kahn, C. R., and Roth, J., 1983a, Characterization of of insulin-mediated phosphorylation of the insulin receptor in a cell free system, J. Biol. Chem., 258: 75–80.Google Scholar
  54. Zick, Y., Rees-Jones, R. W., Grunberger, G., Taylor, S. I., Moncada, V., Gorden, P., and Roth, J., 1983b, The insulin-stimulated receptor kinase is a tyrosine-specific casein kinase, Eur. J. Biochem., 137: 631–637.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Kin-Tak Yu
    • 1
  • Michael P. Czech
    • 1
  1. 1.Department of BiochemistryUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations