Advertisement

The Interaction of Egg Peptides with Spermatozoa

  • David L. Garbers
  • Thomas D. Noland
  • Lawrence J. Dangott
  • Chodavarapu S. Ramarao
  • J. Kelley Bentley
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 205)

Abstract

Mechanisms by which eggs (includes acellular matrices as well as other attached cells, such as cumulus oophorus cells) and/or other components of the female reproductive tract communicate with spermatozoa are beginning to be understood. Research has progressed to the molecular level in both invertebrates and vertebrates, and it can be anticipated that the genes responsible for the synthesis of some of the regulatory components will be soon identified and their function (or fate) in animals separated by large evolutionary distances determined.

Keywords

Seminal Plasma Zona Pellucida Guanylate Cyclase Apparent Molecular Weight Acrosome Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, G. D., Bellin, M. E., Ax, R. L., and First, N. L., 1982, Glycosaminoglycans in bovine cumulus-oocyte complexes: Morphology and chemistry, Mol. Cell Endocrin., 28: 113–122.CrossRefGoogle Scholar
  2. Bedford, J. M., 1981, Why mammalian gametes don’t mix, Nature, 291: 286–288.PubMedCrossRefGoogle Scholar
  3. Bedford, J. M., 1983, Significance of the need for sperm capacitation before fertilization in Eutherian mammals, Biol. Reprod., 28: 108–120.CrossRefGoogle Scholar
  4. Bentley, J. K., and Garbers, D. L., 1986a, Retention of the speract receptor by isolated plasma membranes of sea urchin spermatozoa, Biol. Reprod., 34: 413–421.CrossRefGoogle Scholar
  5. Bentley, J. K., and Garbers, D. L., 1986b, Isolation of spermatozoan plasma membranes which retain a functional receptor for resact, Cell, in press.Google Scholar
  6. Bentley, J. K., Garbers, D. L., Domino, S. E., Noland, T. D., VanDop, C., 1985, personal communication.Google Scholar
  7. Bleil, J. D., and Wassarman, P. M., 1980, Mammalian sperm-egg interaction: identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm, Cell, 20: 873–882.PubMedCrossRefGoogle Scholar
  8. Bleil, J. D., and Wassarman, P. M., 1983, Sperm-egg interactions in the mouse: Sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein, Dev. Biol., 95: 317–324.Google Scholar
  9. Dangott, L. J., and Garbers, D. L., 1984, Identification and partial characterization of the receptor for speract, J. Biol. Chem., 259: 13712–13716.PubMedGoogle Scholar
  10. Florman, H. M., and Wassarman, P. M., 1985, O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity, Cell, 41:313–324.PubMedCrossRefGoogle Scholar
  11. Foley, C. W., and Williams, W. L., 1967, Effect of bicarbonate and oviduct fluid on respiration of spermatozoa, Proc. Soc. Exp. Biol. Med., 126: 634–637.Google Scholar
  12. Garbers, D. L., and Kopf, G. S., 1980, The regulation of spermatozoa by calcium and cyclic nucleotides, Adv. Cyclic Nucleotide Res., 13: 251–306.Google Scholar
  13. Garbers, D. L., Kopf, G. S., Tubb, D. J., and Olson, G., 1983, Elevation of sperm adenosine 3’:5’-monophosphate concentrations by a fucose-sulfate-rich complex associated with eggs: I. Structural characterization, Biol. Reprod., 29: 1211–1220.CrossRefGoogle Scholar
  14. Garbers, D. L., Tubb, D. J., and Hyne, R. V., 1982a, A requirement of bicarbonate for Ca2+-induced elevations of cyclic AMP in guinea pig spermatozoa, J. Biol. Chem., 257: 8980–8984.Google Scholar
  15. Garbers, D. L., Watkins, H. D., Hansbrough, J. R.. Smith, A., and Misono, K.S., 1982b, The amino acid sequence and chemical synthesis of speract and of speract analogues, J. Biol. Chem., 257: 2734–2737.Google Scholar
  16. Glabe, C. G., 1985, Interaction of the sperm adhesive protein, bindin, with phospholipid vesicles. II. Bindin induces the fusion of mixed-phase vesicles that contain phosphatidylcholine and phosphatidylserine in vitro, J. Cell Biol., 100: 800–806.PubMedCrossRefGoogle Scholar
  17. Glabe, C. G., Grabel, L. B., Vacquier, V. D., and Rosen, S. D., 1982, Carbohydrate specificity of sea urchin sperm bindin: A cell surface lectin mediating sperm-egg adhesion, J. Cell Biol., 94: 123–128.PubMedCrossRefGoogle Scholar
  18. Glabe, C. G., and Lennarz, W. J., 1979, Species-specific sperm adhesion in sea urchins: A quantitative investigation of bindin mediated egg agglutination, J. Cell Biol., 83: 595–604.PubMedCrossRefGoogle Scholar
  19. Glabe, C. G., and Vacquier, V. D., 1978, Egg surface glycoprotein receptor for sea urchin sperm bindin, Proc. Natl. Acad. Sci. USA, 75: 881–885.PubMedCrossRefGoogle Scholar
  20. Gnessi, L., Ruff, M. R., Fraioli, F., and Pert, C.B., 1985, Demonstration of receptor-mediated chemotaxis by human spermatozoa: A novel quantitative bioassay, Exptl. Cell Res., 161: 219–230.CrossRefGoogle Scholar
  21. Gray, J. P., Drummond, G. I., Luk, D. W., Hardman, J. G., and Sutherland, E. W., 1976, Enzymes of vertebrate sperm, Arch. Biochem. Biophys., 172: 20–30.Google Scholar
  22. Hamner, C. E., and Williams, W. L., 1964, Identification of a sperm stimulating factor of rabbit oviduct fluid, Proc. Soc. Exp. Biol. Med., 117: 240–243.PubMedGoogle Scholar
  23. Hansbrough, J. R., and Garbers, D. L., 1981, Purification and characterization of a peptide associtated with eggs that activates spermatozoa, J. Biol. Chem., 256: 1447–1452.PubMedGoogle Scholar
  24. Hildebrandt, J. D., Codina, J., Tash, J. S., Kirchick, H. J., Lipschltz, L., Sekura, R. D., and Birnbaumer, L., 1985, The membrane-bound spermatozoal adenylyl cyclase system does not share coupling characteristics with somatic cell adenylyl cyclases, Endocrinology, 116: 1357–1366.PubMedCrossRefGoogle Scholar
  25. Hyne, R. V., 1984, Bicarbonate-and calcium-dependent induction of rapid guinea pig sperm acrosome reactions by monovalent ionophores, Biol. Reprod., 31: 312–323.CrossRefGoogle Scholar
  26. Iqbal, M., Shivaji, S., Vijayasarathy, S., and Balaram, P., 1980, Synthetic peptides as chemoattractants for bull spermatozoa structure activity correlations, Biochem. Biophys. Res. Commun., 96: 235–242.Google Scholar
  27. Lenz, R. W., Ax, R. L., Grimek, H. J., and First, N. L., 1982, Proteoglycan from bovine follicular fluid enhances an acrosome reaction in bovine spermatozoa, Biochem. Biophys. Res. Commun., 106: 1092–1098.Google Scholar
  28. Lenz, R. W., Ball, G. D., Lohse, J. K., First, N. L., and Ax, R. L., 1983, Chondroitin sulfate facilitates an acrosome reaction in bovine spermatozoa as evidenced by light microscopy, electron microscopy, and in vitro fertilization, Biol. Reprod., 28: 683–690.CrossRefGoogle Scholar
  29. Lodge, J. R., and Salisbury, G. W., 1962, Initiation of anaerobic metabolism of mammalian spermatozoa by carbon dioxide, Nature, 195: 293–294.PubMedCrossRefGoogle Scholar
  30. Meizel, S., and Turner, K. O., 1984, Glycosaminoglycans stimulate the acrosome reaction of previously capacitated hamster sperm, J. Cell Biol., 99: 261.Google Scholar
  31. Miller, R. L., 1982, Synthetic peptides are not chemoattractants for bull sperm, Gamete Res., 5: 395–402.CrossRefGoogle Scholar
  32. Mrsny, R. J., Waxman, L., and Meizel, S., 1979, Taurine maintains and stimulates motility of hamster sperm during capacitation in vitro, J. Exp. Zool., 210: 123–128.PubMedCrossRefGoogle Scholar
  33. Murdoch, R. N., and Davis, W. D., 1978, Effects of bicarbonate on the respiration and glycolytic activity of boar spermatozoa, Aust. J. Biol. Sci., 31: 385–394.PubMedGoogle Scholar
  34. Nomura, K.. and Isaka, S., 1985, Synthetic study on the structure-activity relationship of sperm activating peptides from the jelly coat of sea urchin eggs, Biochem. Biophys. Res. Commun., 126: 974–982.Google Scholar
  35. Nomura, K., Suzuki, N., Ohtake, H., and Isaka, S., 1983, Structure and action of sperm activity peptides from the egg jelly of a sea urchin, Anthocidaris crassispina, Biochem. Biophys. Res. Commun., 117: 147–153.Google Scholar
  36. Ohtake, H., 1976, Respiratory behavior of sea urchin spermatozoa. I. Effect of pH and egg water on the respiratory rate, J. Exp. Zool., 198: 303–312.Google Scholar
  37. Okamura, N., and Sugita, Y., 1983, Activation of spermatozoan adenylate cyclase by a low molecular weight factor in porcine seminal plasma, J. Biol. Chem., 258:13056–13062.PubMedGoogle Scholar
  38. Okamura, N., Tajima, Y., Soejima, A., Masuda, H., and Sugita, Y., 1985, Sodium bicarbônate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase, J. Biol. Chem., 260: 9699–9705.PubMedGoogle Scholar
  39. Ramarao, C. S., and Garbers, D. L., 1985, Receptor-mediated regulation of guanylate cyclase activity in spermatozoa, J. Biol. Chem., 260: 8390–8396.PubMedGoogle Scholar
  40. Repaske, D. R., and Garbers, D, L., 1983, A hydrogen ion flux mediates stimulation of respiratory activity by speract in sea urchin spermatozoa, J. Biol. Chem., 258: 6025–6029.PubMedGoogle Scholar
  41. Rossignol, D. P., Earles, B. J., Decker, G. L., and Lennarz, W. J., 1984, Characterization of the sperm receptor on the surface of the eggs of Strongylocentrotus purpuratus, Dev. Biol., 104: 308–321.Google Scholar
  42. Saling, P. M., Storey, B. T., Wolf, D. P., 1978, Calcium-dependent binding of mouse epididymal spermatozoa to the zona pellucida, Dev. Biol., 65: 515–525.Google Scholar
  43. SeGall, G. K., and Lennarz, W. J., 1979, Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction, Dev. Biol., 71: 33–48.Google Scholar
  44. SeGall, G. K., and Lennarz, W. J., 1981, Jelly coat and induction of the acrosome reaction in echinoid sperm, Dev. Biol., 86: 87–93.Google Scholar
  45. Shimomura, H., and Garbers, D. L., 1985, Differential effects of resact analogues on sperm respiration rates and cyclic nucleotide concentrations, submitted.Google Scholar
  46. Singh, J. P., Babcock, D. F., and Lardy, H. A., 1978, Increased calcium-ion influx is a component of capacitation of spermatozoa, Biochem. J., 172: 549–556.PubMedGoogle Scholar
  47. Smith, A. C., and Garbers, D. L., 1983, The binding of an 1251-speract analogue to spermatozoa, in: “Biochemistry of Metabolic Processes,” D. L. F. Lennon, F. W. Stratman, and R. N. Zahlten, eds., Elsevier Science Pub. Co., New York, pp. 15–28.Google Scholar
  48. Storey, B. T., Lee, M. A., Muller, C., Ward, C. R., and Wirtshafter, D. G., 1984, Binding of mouse spermatozoa to the zonae pellucidae of mouse eggs in cumulus: Evidence that the acrosomes remain substantially intact, Biol. Reprod., 31: 1119–1128.CrossRefGoogle Scholar
  49. Suzuki, N., Nomura, K., Ohtake, H., and Isaka, S., 1981, Purification and the primary structure of sperm-activating peptides from jelly coat of sea urchin eggs, Biochem. Biophys. Res. Commun., 99:1238–1244.PubMedCrossRefGoogle Scholar
  50. Suzuki, N., Shimomura, H., Radany, E. W., Ramarao, C. S., Ward, G. E., Bentley, J. K., and Garbers, D. L., 1984, A peptide associated with eggs causes a mobility shift in a major plasma membrane protein of spermatozoa, J. Biol. Chem., 259: 14874–14879.PubMedGoogle Scholar
  51. Takai, K., Kurashina, Y., Suzuki-Hori, C., Okamota, H., and Hayaishi, O., 1974, Adenylate cyclase from Brevibacterium liquefaciens, I. Purification crystallization, and some properties, J. Biol. Chem., 249: 1965–1972.Google Scholar
  52. Talbot, P., 1984, Hyaluronidase dissolves a component in the hamster zona pellucida, J. Exp. Zool., 229: 309–316.PubMedCrossRefGoogle Scholar
  53. Vacquier, V. D., 1979, The fertilizing capacity of sea urchin sperm rapidly decreases after induction of the acrosome reaction, Dev. Growth Differ., 21: 61–60.CrossRefGoogle Scholar
  54. Vacquier, V. D., 1983, Purification of sea urchin sperm bindin by DEAEcellulose chromatography, Anal. Biochem., 129: 497–501.Google Scholar
  55. Vacquier, V. D., and Moy, G. W., 1977, Isolation of bindin: The protein responsible for adhesion of sperm to sea urchin eggs, Proc. Natl. Acad. Sci. USA, 74: 2456–2460.PubMedCrossRefGoogle Scholar
  56. Vijayaraghavan, S., Critchlow, L. M., and Hoskins, D. D., 1985, Evidence for a role for cellular alkalinization in the cyclic adenosine 3’,5’-monophosphate-mediated initiation of motility in bovine caput spermatozoa, Biol. Reprod., 32: 489–500.CrossRefGoogle Scholar
  57. Vijayasarathy, S., Shivaji, S., Iqbal, M., and Balaram, P., 1980, FormylMet-Leu-Phe induces chemotaxis and acrosomal enzyme release in bull sperm, FEBS Lett., 115: 178–180.PubMedCrossRefGoogle Scholar
  58. Ward, G. E., Brokaw, C. J., Garbers, D. L., and Vacquier, V. D., 1985a, Chemotaxis of Arbacia punctulata spermatozoa to resact, a peptide from the egg jelly layer, J. Cell Biol., 101: 2324–2329.CrossRefGoogle Scholar
  59. Ward, G. E., Garbers, D. L., and Vacquier, V. D., 1985b, Effects of extracellular egg factors on sperm guanylate cyclase, Science, 227: 768–770.CrossRefGoogle Scholar
  60. Ward, G. E., and Vacquier, V. D., 1983, Dephosphorylation of a major sperm membrane protein is induced by egg jelly during sea urchin fertilization, Proc. Natl. Acad. Sci., 80: 5578–5582.PubMedCrossRefGoogle Scholar
  61. Wassarman, P. M., 1983, Fertilization in: “Cell Interactions and Development: Molecular Mechanisms,” K. Yamada, ed., Wiley, New York, pp. 1–27.Google Scholar
  62. Yanagimachi, R., 1981, Mechanisms of fertilization in mammals, in: “Fertilization and Embryonic Development In vitro,” L. M. Mastroianni, and J. D. Biggers, eds., Plenum, New York, pp. 81–182.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David L. Garbers
    • 1
  • Thomas D. Noland
    • 1
  • Lawrence J. Dangott
    • 1
  • Chodavarapu S. Ramarao
    • 1
  • J. Kelley Bentley
    • 1
  1. 1.The Howard Hughes Medical Institute and the Departments of Pharmacology and Molecular Physiology and BiophysicsVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations