Functional Adaptations of Transbilayer Proteins

  • Vincent T. Marchesi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 205)


Many important functions commonly attributed to surface membranes are carried out by membrane-associated proteins that are tightly bound to the lipid bilayer. This class of proteins, which are engineered to extend completely across the lipid bilayer, sometimes in the form of multiple membrane-spanning loops, are generally referred to as transbilayer proteins. Most of the molecules that function as receptors for different proteins also modify cell functions by regulating the rates of transport of different substances across the lipid bilayer. Both types of proteins have unique structural features which allow them to interact with the lipid bilayer. One set of proteins, the receptor type, serve as conduits of information across the bilayer, while the other set, the channel proteins, selectively modify this barrier. This essay will present some generalizations about both types of transbilayer molecules that may help us to understand how they function in the environment of the intact cell.


Lipid Bilayer Amphipathic Helix Nonpolar Amino Acid Plasmodium Knowlesi Human Insulin Receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anantharamaiah, G. M., Jones, J. L., Brouillette, C. G., Schmidt, C. F., Chung, B. H., Hughes, T. A., Bhown, A. S., and Segrest, J. P., 1985, Studies of synthetic peptide analogs of the amphipathic helix: Structure of complexes with dimyristoyl phosphatidylcholine, J. Biol. Chem., 260: 10248–10255.PubMedGoogle Scholar
  2. Anderson, R. A., and Marchesi, V. T., 1985, Associations between glycophorin and protein 4.1 are modulated by polyphosphoinositides: A mechanism for membrane skeletal regulation, Nature, 318: 295–298.PubMedCrossRefGoogle Scholar
  3. Armitage, I., Shapiro, D. L., Furthmayr, H., and Marchesi, V. T., 1977, P31 nuclear magnetic resonance evidence for polyphosphoinositide associated with the hydrophobic segment of glycophorin A., Biochem., 16: 1317–1320.CrossRefGoogle Scholar
  4. Dame, J. B., Williams, J. L., McCutchan, T. F., Weber, J. L., Wirtz, R. A., Hockmeyer, W. T., Maloy, W. L., Haynes, J. D., Schneider, I., Roberts, D., Sanders, G. S., Reddy, E. P., Diggs, C. L., and Miller, L. H., 1984, Structure of the gene encoding the immurodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum, Science, 225: 593–599.Google Scholar
  5. Ebina, Y., Ellis, L., Jarnagin, K., Edery, M., Graf, L., Clauser, E., Ou, J.-H., Masiarz, F., Kan, Y. W., Goldfine, I. D., Roth, R. A., and Rutter, W. J., 1985, The human insulin receptor cDNA: The structural basis for hormone-activated transmembrane signalling, Cell, 40: 747–758.PubMedCrossRefGoogle Scholar
  6. Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature, 257: 28–32.PubMedCrossRefGoogle Scholar
  7. Kaufman, J. F., Auffray, C., Korman, A. J., Shackelford, D. A., and Strominger, J., 1984, The class II molecules of the human and murine major histocompatability complex, Cell, 36: 1–13.PubMedCrossRefGoogle Scholar
  8. Kopito, R. R., and Lodish, H. F., 1985, Primary structure and trans-membrane orientation of the murine anion exchange protein, Nature, 316: 234–238.PubMedCrossRefGoogle Scholar
  9. Leonard, W. J., Depper, J. M., Crabtree, G. R., Rudikoff, S., Pumphrey, J., Robb, R. J., Kronke, M., Svetlik, P. B., Peffer, N. J., Waldmann, T. A., and Greene, W. C., 1984, Molecular cloning and expression of cDNAs for the human interleukin-2 receptor, Nature, 311: 626–630.PubMedCrossRefGoogle Scholar
  10. Maddon, P. J., Littman, D. R., Godfrey, M., Maddon, D. E., Chess, L., and Axel, R., 1985, The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: A new member of the immunoglobulin gene family, Cell, 42: 93–104.PubMedCrossRefGoogle Scholar
  11. McClelland, A., Kuhn, L., and Ruddle, F. H., 1984, The human transferrin receptor gene: Genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence, Cell, 39: 267–274.PubMedCrossRefGoogle Scholar
  12. Mostov, K. E., Friedlander, M., and Blobel, G., 1984, The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains, Nature, 308: 37–43.PubMedCrossRefGoogle Scholar
  13. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F., 1985, Sequence of structure of a human glucose transporter, Science, 229: 941–945.Google Scholar
  14. Nathans, J., and Hogness, D. S., 1984, Isolation and nucleotide sequence of the gene encoding human rhodopsin, Proc. Natl. Acad. Sci. USA, 81: 4851–4855.PubMedCrossRefGoogle Scholar
  15. Nikaido, T., Shimizu, A., Ishida, N., Sabe, H., Teshigawara, K., Maeda, M., Uchiyama, T., Yodoi, J., and Honjo, T., 1984, Molecular cloning of cDNA encoding human interleukin-2 receptor, Nature, 311: 631–635.PubMedCrossRefGoogle Scholar
  16. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature, 312: 121–127.PubMedCrossRefGoogle Scholar
  17. Ozaki, L. S., Svec, P., Nussenzweig, R. S., Nussenzweig, V., and Godson, G. N., 1983, Structure of the plasmodium knowlesi gene coding for the circumsporozoite protein, Cell, 34: 815–822.PubMedCrossRefGoogle Scholar
  18. Schulte, T. H., and Marchesi, V. T., 1979, Conformation of human erythrocyte glycophorin A and its constituent peptides, Biochem., 18: 275–280.CrossRefGoogle Scholar
  19. Seki, T., Spurr, N., Obata, F., Goyert, S., Goodfellow, P., and Silver, J., 1985a, The human Thy-1 gene: Structure and chromosomal location, Proc. Natl. Acad. Sci. USA, 82: 6657–6661.PubMedCrossRefGoogle Scholar
  20. Seki, T., Chang, H.-C., Moriuchi, T., Denome, R., Ploegh, H., and Silver, J., 1985b, A hydrophobic transmembrane segment at the carboxyl terminus of Thy-1, Science, 227: 649–651.PubMedCrossRefGoogle Scholar
  21. Seki, T., Moriuchi, T., Chang, H.-C., Denome, R., and Silver, J., 1985c, Structural organization of the rat thy-1 gene, Nature, 313: 485–487.PubMedCrossRefGoogle Scholar
  22. Shull, G. E., Schwartz, A., and Lingrel, J. B., 1985, Amino-acid sequence of the catalytic subunit of the (Na+-K+)ATPase deduced from a complementary DNA, Nature, 316: 691–700.PubMedCrossRefGoogle Scholar
  23. Tomita, M., Furthmayr, H., and Marchesi, V. T., 1978, Primary structure of human erythrocyte glycophorin A. Isolation and Characterization of peptides and complete amino acid sequence, Biochem., 17: 4756–4770.CrossRefGoogle Scholar
  24. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, M., Dull, T. J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason A., Seeburg, P. H., Grunfeld, C., Rosen, 0. M., and Ramachandran, J., 1985, Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes, Nature, 313: 756–761.Google Scholar
  25. Ullrich, A., Coussens, L., Hayflick, J. S., Dull, T. J., Gray, A., Tam, A. W., Lee, J., Yarden, Y., Liberman, T. A., Schlessinger, J., Downward, J., Mayes, E. L. V., Whittles, N., Waterfield, M. D., and Seeburg, P. H., 1984, Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells, Nature, 309: 418–425.PubMedCrossRefGoogle Scholar
  26. Yamamoto, T., Davis, C. G., Brown, M. S., Schneider, W. J., Casey, M. L., Goldstein, J. L., and Russell, D. W., 1984, The human LDL receptor: A cysteine-rich protein with multiple alu sequences in its mRNA, Cell, 39: 27–38.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Vincent T. Marchesi
    • 1
  1. 1.Department of PathologyYale University School of MedicineNew HavenUSA

Personalised recommendations