Skip to main content

Biosynthetic Controls That Determine the Branching and Microheterogeneity of Protein-Bound Oligosaccharides

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 205))

Abstract

The past ten years have witnessed an unprecedented explosion in our knowledge of complex carbohydrate fine structure. The techniques which have been responsible for these advances include high resolution gel filtration chromatography, high performance liquid chromatography, the availability of a battery of exo- and endo-glycosidases with well-characterized specificities, new chemical methods for cleaving carbohydrate-amino acid linkages, high field nuclear magnetic resonance spectrometry, and high resolution mass spectrometry. It is clear that two properties distinguish complex carbohydrates from proteins and nucleic acids, the other two classes of biological macromolecules, namely: 1) branching and 2) microheterogeneity. These properties pose both challenges and problems for researchers interested in the function and biosynthesis of complex carbohydrates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, S. D., Tsai, D. and Schachter, H., 1984, Control of glycoprotein synthesis. X. The in vitro synthesis by hen oviduct membrane preparations of hybrid asparagine-linked oligosaccharides containing 5 mannose residues. J. Biol. Chem. 259:6984–6990.

    PubMed  CAS  Google Scholar 

  • Beyer, T. A., Sadler, J. E., Rearick, J. I., Paulson, J. C., and Hill R. L., 1981, Glycosyltransferases and their use in assessing oligosaccharlde structure and structure-function relationships, Adv. in Enzymol. 52:23–175.

    CAS  Google Scholar 

  • Blanken, W. M., Hooghwinkel, G. J. M., and Van den Eijnden, D. H., 1982, Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum 8-N-acetyl-D-glucosaminide ßl-4galactosyltransferase, Eur. J. Biochem. 127:547–552.

    Article  PubMed  CAS  Google Scholar 

  • Blanken, W. M., Van Vliet, A., and Van den Eijnden, D. H., 1984, Acceptor specificity of calf thymus N-acetyllactosaminide al-3-galactosyl-transferase, in: “Carbohydrates, 1984”, Abstracts of the XIIth International Carbohydrate Symposium, J. F. G. Vliegenthart, J. P. Kamerling, and G. A. Veldink, eds., Vonk Publishers, Utrecht, p. 229.

    Google Scholar 

  • Brisson, J-R., and Carver, J. P., 1983, The relation of three-dimensional structure to biosynthesis in the N-linked oligosaccharides, Can. J. Biochem. Cell Biol. 61:1067–1078.

    Article  PubMed  CAS  Google Scholar 

  • Brockhausen, I., Rachaman, E. S., Matta, K. L., and Schachter, H., 1983a, Mucin Synthesis. IV. The separation by high performance liquid chromatography of phenyl, benzyl and ortho-nitrophenyl oligosaccharide glycosides. Analysis of substrates and products for four N-acetyl-D-glucosaminyltransferases involved in mucin synthesis, Carbohyd. Res., 120:3–16.

    Article  CAS  Google Scholar 

  • Brockhausen, I., Williams, D., Matta, K. L., Orr, J., and Schachter, H., 1983b, Mucin Synthesis. III. UDP-G1cNAc:Ga181–3(G1cNAc81–6)GalNAc-R (G1cNAc to Gal) 63-N-acetylglucosaminyltransferase, an enzyme in porcine gastric mucosa involved in the elongation of mucin-type oligosaccharides, Can. J. Biochem. Cell Biol. 61:1322–1333.

    Article  CAS  Google Scholar 

  • Brockhausen, I., Orr, J., and Schachter, H., 1984, Mucin synthesis. V., The action of pig gastric mucosal UDP-G1cNAc:Galß1–3(R1)GalNAc-R2 (G1cNAc to Gal) 83-N-acetylglucosaminyltransferase on high molecular weight substrates, Can. J. Biochem. Cell Biol., 62:1081–1090.

    Article  PubMed  CAS  Google Scholar 

  • Brockhausen, I., Matta, K. L., Orr, J., and Schachter, H., 1985, Mucin Synthesis. VI. UDP-G1cNAc:GalNAc-R 83-N-acetylglucosaminyltransferase and UDP-G1cNAc:G1cNAc81–3GalNAc-R (G1cNAc to GalNAc) 86-N-acetylglucosaminyltransferase from pig and rat colon mucosa, Biochemistry 24:1866–1874.

    Article  PubMed  CAS  Google Scholar 

  • Carver, J. P., and Brisson, J-R., 1984, The three-dimensional structure of N-linked oligosaccharides, in: “Biology of Carbohydrates”, Vol.2, V. Ginsburg and P. W. Robbins, eds., John Wiley & Sons, New York, pp.289–331.

    Google Scholar 

  • Carver, J. P., Mackenzie, A. E., and Hardman, K. D., 1985, Molecular model for the complex between concanavalin A and a biantennary-complex class glycopeptide, Biopolymers 24:49–63.

    Article  CAS  Google Scholar 

  • Cummings, R. D., Trowbridge, I. S., and Kornfeld, S., 1982, A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-G1cNAc:a-D-mannoside 81,6 N-acetylglucosaminyltransferase, J. Biol. Chem. 257:13421–13427.

    PubMed  CAS  Google Scholar 

  • Dunphy, W. G., and Rothman, J. E., 1985, Compartmental organization of the Golgi stack, Cell 42:13–21.

    Article  PubMed  CAS  Google Scholar 

  • Feizi, T., 1984, Monoclonal antibodies reveal saccharide structures of glycoproteins and glycolipids as differentiation and tumor-associated antigens, Biochem. Soc. Trans. 12:545–549.

    PubMed  CAS  Google Scholar 

  • Fenderson, B. A., Zehavi, U., and Hakomori, S-I., 1984, A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation-stage mouse embryos, while the free oligosaccharide is ineffective, J. Exp. Med. 160:1591–1596.

    Article  PubMed  CAS  Google Scholar 

  • Fiat, A. M., Jolles, P., Vliegenthart, J. F. G., and Van Halbeek, H., 1984, Structural aspects concerning the prosthetic sugar groups of bovine and human kappa-caseinoglycopeptides, in: “Carbohydrates, 1984”, Abstracts of the XIIth International Carbohydrate Symposium, J. F. G. Vliegenthart, J. P. Kamerling, and G. A. Veldink, eds., Vonk Publishers, Utrecht, p.426.

    Google Scholar 

  • Fukuda M., 1985, Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells, Biochem. Biophys. Acta, 780:119–150.

    PubMed  CAS  Google Scholar 

  • Fukuda, M., and Fukuda, M. N., 1984, Cell surface glycoproteins and carbohydrate antigens in development and differentiation of human erythroid cells, in: “The Biology of Glycoproteins”, R. J. Ivatt, ed., Plenum Press, New York, pp.183–234.

    Chapter  Google Scholar 

  • Gleeson, P. A., and Schachter, H., 1983, Control of Glycoprotein Synthesis. VIII. UDP-G1cNAc:GnGn (G1cNAc to Manal-3) 84-Nacetylglucosaminyltransferase IV, an enzyme in hen oviduct which adds G1cNAc in ßl-4 linkage to the al-3-linked Man residue of the trimannosyl core of N-glycosyl oligosaccharides to form a tri-antennary structure, J. Biol. Chem. 258:6162–6173.

    PubMed  CAS  Google Scholar 

  • Gooi, H. C., Feizi, T., Kapadia, A., Knowles, B. B., Solter, D., and Evans, J. M., 1981, Stage-specific embryonic antigen involves al-3fucosylated type 2 blood group chains, Nature (London) 292:156–158.

    Article  CAS  Google Scholar 

  • Hakomori, S-I., 1985, Aberrant glycosylation in cancer cell membranes as focused on glycolipids: Overview and perspectives, Cancer Res. 45:2405–2414.

    PubMed  CAS  Google Scholar 

  • Hakomori, S-I., Fukuda, M., and Nudelman, E., 1982, Role of cell surface carbohydrates in differentiation: Behavior of lactosaminoglycan in glycolipids and glycoproteins, in: “Teratocarcinoma and embryonic cell interactions”, T. Muramatsu, G. Gachelin, A. A. Moscona, and Y. Ikawa, eds., Japan Scientific Soc. Press, Tokyo, pp.179–200.

    Google Scholar 

  • Harpaz, N., and Schachter, H., 1980, Control of glycoprotein synthesis. V. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi a-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine:a-D-mannoside 8–2-N-acetylglucosaminyl- transferase I. J. Biol. Chem. 255:4894–4902.

    PubMed  CAS  Google Scholar 

  • Hitoi, A., Yamashita, K., Ohkawa, J., and Kobata, A., 1984, Application of a Phaseolus vulgaris erythroagglutinating lectin agarose column for the specific detection of human hepatoma gamma-glutamyl transpeptidase in serum. Gann, 75:301–304.

    PubMed  CAS  Google Scholar 

  • Ivatt, R. J., 1984, Role of glycoproteins during early mammalian embryogenesis, in: “The Biology of Glycoproteins”, R. J. Ivatt, ed., Plenum Press, New York, pp.95–181.

    Chapter  Google Scholar 

  • Joziasse, D. H., Schiphorst, W. E. C. M., Van den Eijnden, D. H., Van Kuik, J. A., Van Halbeek, H., and Vliegenthart, J. F. G., 1984, Branch specificity of bovine colostrum a2–6-sialyltransferase: Interaction with biantennary oligosaccharides and glycopeptides of N-glycosylproteins, in: “Carbohydrates, 1984”, Abstracts of the XIIth International Carbohydrate Symposium, J. F. G. Vliegenthart, J. P. Kamerling and G. A. Veldink, eds., Vonk Publishers, Utrecht, p. 228.

    Google Scholar 

  • Kannagi, R., Levery S. B., and Hakomori, S-I., 1983, Sequential change of carbohydrate antigen associated with differentiation of murine leukemia cells: Ii antigenic conversion and shifting of glycolipid synthesis, Proc. Nat. Acad. Sci. USA 80:2844–2848.

    Article  PubMed  CAS  Google Scholar 

  • Kobata, A., 1982, Structures of the sugar chains of cell surface glycoproteins, in: “Structure, Dynamics and Biogenesis of Biomembranes”, R. Sato and S. Ohnishi, eds., Japan Scientific Society Press, Tokyo, pp. 97–112.

    Chapter  Google Scholar 

  • Kobata, A., 1984, The carbohydrates of glycoproteins, in: “Biology of Carbohydrates”, Vol. 2, V. Ginsburg and P. W. Robbins, eds., John Wiley & Sons, New York, pp. 87–161.

    Google Scholar 

  • Kobata, A., and Yamashita, K., 1984, The sugar chains of gamma-glutamyl transpeptidase, Pure & Appl. Chem. 56:821–832.

    Article  CAS  Google Scholar 

  • Kornfeld, R., and Kornfeld S., 1985, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem. 54:631–664.

    Article  PubMed  CAS  Google Scholar 

  • Longmore, G. D., and Schachter, H., 1982, Control of Glycoprotein Synthesis. VI. Product identification and substrate specificity studies of the GDP-L-Fucose:2-acetamido-2-deoxy-B-D-glucoside (Fuc to Asn-linked G1cNAc) 6-a-L-fucosyltransferase in a Golgi-rich fraction from porcine liver, Carbohydrate Research 100:365–392.

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan, S., 1982, Control of glycoprotein synthesis. VII. UDP-G1cNAc:glycopeptide 84-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in 81–4 linkage to the 8-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides, J. Biol. Chem. 257:10235–10242.

    PubMed  CAS  Google Scholar 

  • Narasimhan, S., Shirley, M., Hewitt, J. M., Freedman, M. H., Gelfand, E. W., and Schachter, H., 1983, UDP-G1cNAc:GnGn (G1cNAc to Manßl-4) ß4-GlcNAc-transferase III (Gn-T III) in human tissues, Fed.Procs. 42:2199.

    Google Scholar 

  • Narasimhan, S., Freed, J. C., and Schachter, H., 1985, Control of glycoprotein synthesis. XI. Bovine milk UDP-galactose: N-acetylglucosamine ß4-galactosyltransferase catalyzes the preferential transfer of galactose to the GlcNAcßl,2Mana1,3- branch of both bisected and non-bisected complex biantennary asparagine-linked oligosaccharides, Biochemistry 24:1694–1700.

    Article  PubMed  CAS  Google Scholar 

  • Paquet, M. R., Narasimhan, S., Schachter, H., and Moscarello, M. A., 1984, Branch specificity of purified rat liver Golgi UDP-galactose: N-acetylglucosamine B-1,4-galactosyltransferase. Preferential transfer of galactose on the G1cNAc31,2-Mana1,3- branch of a complex biantennary Asn-linked oligosaccharide. J. Biol. Chem. 259:4716–4721.

    PubMed  CAS  Google Scholar 

  • Piller, F., Cartron, J-P., Maranduba, A., Veyrieres, A., Leroy, Y., and Fournet, B., 1984, Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAc-ß1–3Gal (G1cNAc to Gal) $1–6-N-acetylglucosaminyltransferase in hog gastric mucosa, J. Biol. Chem. 259:13385–13390.

    PubMed  CAS  Google Scholar 

  • Rothman, J. E., 1985, The compartmental organization of the Golgi apparatus, Scientific American 253:74–89.

    Article  PubMed  CAS  Google Scholar 

  • Sadler, J. E., 1984, Biosynthesis of glycoproteins: Formation of 0-linked oligosaccharides, in: “Biology of Carbohydrates”, Vol.2, V. Ginsburg and P. W. Robbins, eds., John Wiley & Sons, New York, pp. 199–288.

    Google Scholar 

  • Sawidou, G., Klein, M., Grey, A. A., Dorrington, K. J., and Carver, J. P., 1984, Possible role for peptide-oligosaccharide interactions in differential oligosaccharide processing at asparagine-107 of the light chain and asparagine-297 of the heavy chain in a monoclonal IgGlk, Biochemistry 23:3736–3740.

    Article  Google Scholar 

  • Schachter, H., and Williams, D., 1982, Biosynthesis of mucus glycoproteins, in: “Mucus in Health and Disease”, Vol.II, E. N. Chantier, J. B. Elder, and M. Elstein, eds., Adv. Exp. Medicine and Biology, Vol. 144, Plenum Press, New York and London, pp. 3–28.

    Chapter  Google Scholar 

  • Schachter H., McGuire, E. J., and Roseman, S., 1971, Sialic Acids. XIII. A uridine diphosphate D-galactose: mucin galactosyltransferase from porcine submaxillary gland, J. Biol. Chem. 246:5321–5328.

    PubMed  CAS  Google Scholar 

  • Schachter, H., Narasimhan, S., Gleeson, P., and Vella, G. J., 1983, Control of branching during the biosynthesis of asparagine-linked oligosaccharides, Can. J. Biochem. Cell Biol. 61:1049–1066.

    Article  PubMed  CAS  Google Scholar 

  • Schachter, H., Narasimhan, S., Gleeson, P., Vella, G., and Brockhausen, I., 1985, Glycosyltransferases involved in the biosynthesis of protein-bound oligosaccharides of the asparagineN-acetyl-D-glucosamine and serine(threonine)-N-acetyl-D-galactos-amine types, in: “The Enzymes of Biological Membranes,” Second Edition, Volume 2, Biosynthesis and Metabolism, A. N. Martonosi, ed., Plenum Press, New York, pp. 227–277.

    Chapter  Google Scholar 

  • Snider, M. D., 1984, Biosynthesis of glycoproteins: Formation of N-linked oligosaccharides, in: “Biology of Carbohydrates”, Vol. 2, V. Ginsburg and P. W. Robbins, eds., John Wiley & Sons, New York, pp. 163–198.

    Google Scholar 

  • Testa, U., Henri, A., Bettaieb, A., Titeux, M., Vainchenker, W., Tonthat, H., Docklear, M. C., and Rochant, H., 1982, Regulation of i-and I-antigenic expression in the K562 cell line, Cancer Res. 42:4694–4700.

    PubMed  CAS  Google Scholar 

  • Van den Eijnden, D. H., Joziasse, D. H., Dorland, L., Van Halbeek, H., Vliegenthart, J. F. G., and Schmid, K., 1980, Specificity in the enzymic transfer of sialic acid to the oligosaccharide branches of bi-and triantennary glycopeptides of al-acid glycoprotein, Biochem. & Biophys. Res. Commum. 92:839–845.

    Article  Google Scholar 

  • Vella, G. J., Paulsen, H., and Schachter, H., 1984, Control of glycoprotein synthesis. IX. A terminal Mana1–3Manßl-sequence in the substrate is the minimum requirement for UDP-N-acetylglucosamine:a-D-mannoside (G1cNAc to Manal-3-) 82-N-acetylglucosaminyltransferase I, Can. J. Biochem. Ce115 Biol. 62:409–417.

    Article  CAS  Google Scholar 

  • Williams, D., and Schachter, H., 1980, Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates, J. Biol. Chem. 255:11247–11252.

    PubMed  CAS  Google Scholar 

  • Williams, D., Longmore, G., Matta, K. L., and Schachter, H., 1980, Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-N-acetylglucosamine: Gal31–3GalNAc (G1cNAc to GalNAc) 86-N-acetylglucosaminyltransferase, J. Biol. Chem. 255:11253–11261.

    PubMed  CAS  Google Scholar 

  • Yamashita, K., Kamerling, J. P., and Kobata, A., 1982, Structural study of the carbohydrate moiety of hen ovomucoid. Occurrence of a series of pentaantennary complex-type asparagine-linked sugar chains, J. Biol. Chem. 257:12809–12814.

    PubMed  CAS  Google Scholar 

  • Yamashita, K., Hitoi, A., Matsuda, Y., Tsuji, A., Katunuma, N., and Kobata, A., 1983a, Structural studies of the carbohydrate moieties of rat kidney gamma-glutamyltranspeptidase. An extremely heterogeneous pattern enriched with nonreducing terminal N-acetylglucosamine residues, J. Biol. Chem. 258:1098–1107.

    CAS  Google Scholar 

  • Yamashita, K., Hitoi, A., Taniguchi, N., Yokosawa, N., Tsukada, Y., and Kobata, A., 1983b, Comparative study of the sugar chains of gamma-glutamyltranspeptidases purified from rat liver and rat AH-66 hepatoma cells, Cancer Res. 43:5059–5063.

    CAS  Google Scholar 

  • Yamashita, K., Hitoi, A., Tateishi, N., Higashi, T., Sakamoto, Y., and Kobata, A., 1983c, Organ-specific difference in the sugar chains of gamma-glutamyltranspeptidase, Arch. Biochem. Biophys. 225:993–996.

    Article  CAS  Google Scholar 

  • Yamashita, K., Kamerling, J. P., and Kobata, A., 1983d, Structural studies of the sugar chains of hen ovomucoid. Evidence indicating that they are formed mainly by the alternate biosynthetic pathway of asparagine-linked sugar chains, J. Biol. Chem. 258:3099–3106.

    CAS  Google Scholar 

  • Yamashita, K., Tachibana, Y., Hitoi, A., Matsuda, Y., Tsuji, A., Katunuma, N., and Kobata, A., 1983e, Difference in the sugar chains of two subunits and of isozymic forms of rat kidney gammaglutamyltranspeptidase, Arch. Biochem. Biophys. 227:225–232.

    Article  CAS  Google Scholar 

  • Yamashita, K., Tachibana, Y., Shichi, H., and Kobata, A., 1983f, Carbohydrate structures of bovine kidney gamma-glutamyltranspeptidase, J. Biochem. 93:135–147.

    CAS  Google Scholar 

  • Yamashita, K., Tachibana, Y., Hitoi, A., and Kobata, A., 1984, Sialic acid-containing sugar chains of hen ovalbumin and ovomucoid, Carbohydrate Res. 130:271–288.

    Article  CAS  Google Scholar 

  • Yamashita, K., Hitoi, A., Tateishi, N., Higashi, T., Sakamoto, Y., and Kobata, A., 1985a, The structures of the carbohydrate moieties of mouse kidney gamma-glutamyltranspeptidase: Occurrence of X-antigenic determinants and bisecting N-acetylglucosamine residues, Arch. Biochem. Biophys. 240:573–582.

    Article  CAS  Google Scholar 

  • Yamashita, K., Tachibana, Y., Ohkura, T., and Kobata, A., 1985b, Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation, J. Biol. Chem. 260:3963–3969.

    CAS  Google Scholar 

  • Zielenski, J., and Koscielak, J., 1983, Sera of I subjects have the capacity to synthesize the branched G1cNAc-ß(1–6)[GlcNAc-ß(1–3)]Gal…structure, FEBS Letters 163:114–118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Schachter, H. (1986). Biosynthetic Controls That Determine the Branching and Microheterogeneity of Protein-Bound Oligosaccharides. In: Dhindsa, D.S., Bahl, O.P. (eds) Molecular and Cellular Aspects of Reproduction. Advances in Experimental Medicine and Biology, vol 205. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5209-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5209-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5211-2

  • Online ISBN: 978-1-4684-5209-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics