Advertisement

Biosynthetic Controls That Determine the Branching and Microheterogeneity of Protein-Bound Oligosaccharides

  • Harry Schachter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 205)

Abstract

The past ten years have witnessed an unprecedented explosion in our knowledge of complex carbohydrate fine structure. The techniques which have been responsible for these advances include high resolution gel filtration chromatography, high performance liquid chromatography, the availability of a battery of exo- and endo-glycosidases with well-characterized specificities, new chemical methods for cleaving carbohydrate-amino acid linkages, high field nuclear magnetic resonance spectrometry, and high resolution mass spectrometry. It is clear that two properties distinguish complex carbohydrates from proteins and nucleic acids, the other two classes of biological macromolecules, namely: 1) branching and 2) microheterogeneity. These properties pose both challenges and problems for researchers interested in the function and biosynthesis of complex carbohydrates.

Keywords

Blood Group Assembly Line Submaxillary Gland Complex Carbohydrate Sugar Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, S. D., Tsai, D. and Schachter, H., 1984, Control of glycoprotein synthesis. X. The in vitro synthesis by hen oviduct membrane preparations of hybrid asparagine-linked oligosaccharides containing 5 mannose residues. J. Biol. Chem. 259:6984–6990.PubMedGoogle Scholar
  2. Beyer, T. A., Sadler, J. E., Rearick, J. I., Paulson, J. C., and Hill R. L., 1981, Glycosyltransferases and their use in assessing oligosaccharlde structure and structure-function relationships, Adv. in Enzymol. 52:23–175.Google Scholar
  3. Blanken, W. M., Hooghwinkel, G. J. M., and Van den Eijnden, D. H., 1982, Biosynthesis of blood-group I and i substances. Specificity of bovine colostrum 8-N-acetyl-D-glucosaminide ßl-4galactosyltransferase, Eur. J. Biochem. 127:547–552.PubMedCrossRefGoogle Scholar
  4. Blanken, W. M., Van Vliet, A., and Van den Eijnden, D. H., 1984, Acceptor specificity of calf thymus N-acetyllactosaminide al-3-galactosyl-transferase, in: “Carbohydrates, 1984”, Abstracts of the XIIth International Carbohydrate Symposium, J. F. G. Vliegenthart, J. P. Kamerling, and G. A. Veldink, eds., Vonk Publishers, Utrecht, p. 229.Google Scholar
  5. Brisson, J-R., and Carver, J. P., 1983, The relation of three-dimensional structure to biosynthesis in the N-linked oligosaccharides, Can. J. Biochem. Cell Biol. 61:1067–1078.PubMedCrossRefGoogle Scholar
  6. Brockhausen, I., Rachaman, E. S., Matta, K. L., and Schachter, H., 1983a, Mucin Synthesis. IV. The separation by high performance liquid chromatography of phenyl, benzyl and ortho-nitrophenyl oligosaccharide glycosides. Analysis of substrates and products for four N-acetyl-D-glucosaminyltransferases involved in mucin synthesis, Carbohyd. Res., 120:3–16.CrossRefGoogle Scholar
  7. Brockhausen, I., Williams, D., Matta, K. L., Orr, J., and Schachter, H., 1983b, Mucin Synthesis. III. UDP-G1cNAc:Ga181–3(G1cNAc81–6)GalNAc-R (G1cNAc to Gal) 63-N-acetylglucosaminyltransferase, an enzyme in porcine gastric mucosa involved in the elongation of mucin-type oligosaccharides, Can. J. Biochem. Cell Biol. 61:1322–1333.CrossRefGoogle Scholar
  8. Brockhausen, I., Orr, J., and Schachter, H., 1984, Mucin synthesis. V., The action of pig gastric mucosal UDP-G1cNAc:Galß1–3(R1)GalNAc-R2 (G1cNAc to Gal) 83-N-acetylglucosaminyltransferase on high molecular weight substrates, Can. J. Biochem. Cell Biol., 62:1081–1090.PubMedCrossRefGoogle Scholar
  9. Brockhausen, I., Matta, K. L., Orr, J., and Schachter, H., 1985, Mucin Synthesis. VI. UDP-G1cNAc:GalNAc-R 83-N-acetylglucosaminyltransferase and UDP-G1cNAc:G1cNAc81–3GalNAc-R (G1cNAc to GalNAc) 86-N-acetylglucosaminyltransferase from pig and rat colon mucosa, Biochemistry 24:1866–1874.PubMedCrossRefGoogle Scholar
  10. Carver, J. P., and Brisson, J-R., 1984, The three-dimensional structure of N-linked oligosaccharides, in: “Biology of Carbohydrates”, Vol.2, V. Ginsburg and P. W. Robbins, eds., John Wiley & Sons, New York, pp.289–331.Google Scholar
  11. Carver, J. P., Mackenzie, A. E., and Hardman, K. D., 1985, Molecular model for the complex between concanavalin A and a biantennary-complex class glycopeptide, Biopolymers 24:49–63.CrossRefGoogle Scholar
  12. Cummings, R. D., Trowbridge, I. S., and Kornfeld, S., 1982, A mouse lymphoma cell line resistant to the leukoagglutinating lectin from Phaseolus vulgaris is deficient in UDP-G1cNAc:a-D-mannoside 81,6 N-acetylglucosaminyltransferase, J. Biol. Chem. 257:13421–13427.PubMedGoogle Scholar
  13. Dunphy, W. G., and Rothman, J. E., 1985, Compartmental organization of the Golgi stack, Cell 42:13–21.PubMedCrossRefGoogle Scholar
  14. Feizi, T., 1984, Monoclonal antibodies reveal saccharide structures of glycoproteins and glycolipids as differentiation and tumor-associated antigens, Biochem. Soc. Trans. 12:545–549.PubMedGoogle Scholar
  15. Fenderson, B. A., Zehavi, U., and Hakomori, S-I., 1984, A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation-stage mouse embryos, while the free oligosaccharide is ineffective, J. Exp. Med. 160:1591–1596.PubMedCrossRefGoogle Scholar
  16. Fiat, A. M., Jolles, P., Vliegenthart, J. F. G., and Van Halbeek, H., 1984, Structural aspects concerning the prosthetic sugar groups of bovine and human kappa-caseinoglycopeptides, in: “Carbohydrates, 1984”, Abstracts of the XIIth International Carbohydrate Symposium, J. F. G. Vliegenthart, J. P. Kamerling, and G. A. Veldink, eds., Vonk Publishers, Utrecht, p.426.Google Scholar
  17. Fukuda M., 1985, Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells, Biochem. Biophys. Acta, 780:119–150.PubMedGoogle Scholar
  18. Fukuda, M., and Fukuda, M. N., 1984, Cell surface glycoproteins and carbohydrate antigens in development and differentiation of human erythroid cells, in: “The Biology of Glycoproteins”, R. J. Ivatt, ed., Plenum Press, New York, pp.183–234.CrossRefGoogle Scholar
  19. Gleeson, P. A., and Schachter, H., 1983, Control of Glycoprotein Synthesis. VIII. UDP-G1cNAc:GnGn (G1cNAc to Manal-3) 84-Nacetylglucosaminyltransferase IV, an enzyme in hen oviduct which adds G1cNAc in ßl-4 linkage to the al-3-linked Man residue of the trimannosyl core of N-glycosyl oligosaccharides to form a tri-antennary structure, J. Biol. Chem. 258:6162–6173.PubMedGoogle Scholar
  20. Gooi, H. C., Feizi, T., Kapadia, A., Knowles, B. B., Solter, D., and Evans, J. M., 1981, Stage-specific embryonic antigen involves al-3fucosylated type 2 blood group chains, Nature (London) 292:156–158.CrossRefGoogle Scholar
  21. Hakomori, S-I., 1985, Aberrant glycosylation in cancer cell membranes as focused on glycolipids: Overview and perspectives, Cancer Res. 45:2405–2414.PubMedGoogle Scholar
  22. Hakomori, S-I., Fukuda, M., and Nudelman, E., 1982, Role of cell surface carbohydrates in differentiation: Behavior of lactosaminoglycan in glycolipids and glycoproteins, in: “Teratocarcinoma and embryonic cell interactions”, T. Muramatsu, G. Gachelin, A. A. Moscona, and Y. Ikawa, eds., Japan Scientific Soc. Press, Tokyo, pp.179–200.Google Scholar
  23. Harpaz, N., and Schachter, H., 1980, Control of glycoprotein synthesis. V. Processing of asparagine-linked oligosaccharides by one or more rat liver Golgi a-D-mannosidases dependent on the prior action of UDP-N-acetylglucosamine:a-D-mannoside 8–2-N-acetylglucosaminyl- transferase I. J. Biol. Chem. 255:4894–4902.PubMedGoogle Scholar
  24. Hitoi, A., Yamashita, K., Ohkawa, J., and Kobata, A., 1984, Application of a Phaseolus vulgaris erythroagglutinating lectin agarose column for the specific detection of human hepatoma gamma-glutamyl transpeptidase in serum. Gann, 75:301–304.PubMedGoogle Scholar
  25. Ivatt, R. J., 1984, Role of glycoproteins during early mammalian embryogenesis, in: “The Biology of Glycoproteins”, R. J. Ivatt, ed., Plenum Press, New York, pp.95–181.CrossRefGoogle Scholar
  26. Joziasse, D. H., Schiphorst, W. E. C. M., Van den Eijnden, D. H., Van Kuik, J. A., Van Halbeek, H., and Vliegenthart, J. F. G., 1984, Branch specificity of bovine colostrum a2–6-sialyltransferase: Interaction with biantennary oligosaccharides and glycopeptides of N-glycosylproteins, in: “Carbohydrates, 1984”, Abstracts of the XIIth International Carbohydrate Symposium, J. F. G. Vliegenthart, J. P. Kamerling and G. A. Veldink, eds., Vonk Publishers, Utrecht, p. 228.Google Scholar
  27. Kannagi, R., Levery S. B., and Hakomori, S-I., 1983, Sequential change of carbohydrate antigen associated with differentiation of murine leukemia cells: Ii antigenic conversion and shifting of glycolipid synthesis, Proc. Nat. Acad. Sci. USA 80:2844–2848.PubMedCrossRefGoogle Scholar
  28. Kobata, A., 1982, Structures of the sugar chains of cell surface glycoproteins, in: “Structure, Dynamics and Biogenesis of Biomembranes”, R. Sato and S. Ohnishi, eds., Japan Scientific Society Press, Tokyo, pp. 97–112.CrossRefGoogle Scholar
  29. Kobata, A., 1984, The carbohydrates of glycoproteins, in: “Biology of Carbohydrates”, Vol. 2, V. Ginsburg and P. W. Robbins, eds., John Wiley & Sons, New York, pp. 87–161.Google Scholar
  30. Kobata, A., and Yamashita, K., 1984, The sugar chains of gamma-glutamyl transpeptidase, Pure & Appl. Chem. 56:821–832.CrossRefGoogle Scholar
  31. Kornfeld, R., and Kornfeld S., 1985, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem. 54:631–664.PubMedCrossRefGoogle Scholar
  32. Longmore, G. D., and Schachter, H., 1982, Control of Glycoprotein Synthesis. VI. Product identification and substrate specificity studies of the GDP-L-Fucose:2-acetamido-2-deoxy-B-D-glucoside (Fuc to Asn-linked G1cNAc) 6-a-L-fucosyltransferase in a Golgi-rich fraction from porcine liver, Carbohydrate Research 100:365–392.PubMedCrossRefGoogle Scholar
  33. Narasimhan, S., 1982, Control of glycoprotein synthesis. VII. UDP-G1cNAc:glycopeptide 84-N-acetylglucosaminyltransferase III, an enzyme in hen oviduct which adds GlcNAc in 81–4 linkage to the 8-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides, J. Biol. Chem. 257:10235–10242.PubMedGoogle Scholar
  34. Narasimhan, S., Shirley, M., Hewitt, J. M., Freedman, M. H., Gelfand, E. W., and Schachter, H., 1983, UDP-G1cNAc:GnGn (G1cNAc to Manßl-4) ß4-GlcNAc-transferase III (Gn-T III) in human tissues, Fed.Procs. 42:2199.Google Scholar
  35. Narasimhan, S., Freed, J. C., and Schachter, H., 1985, Control of glycoprotein synthesis. XI. Bovine milk UDP-galactose: N-acetylglucosamine ß4-galactosyltransferase catalyzes the preferential transfer of galactose to the GlcNAcßl,2Mana1,3- branch of both bisected and non-bisected complex biantennary asparagine-linked oligosaccharides, Biochemistry 24:1694–1700.PubMedCrossRefGoogle Scholar
  36. Paquet, M. R., Narasimhan, S., Schachter, H., and Moscarello, M. A., 1984, Branch specificity of purified rat liver Golgi UDP-galactose: N-acetylglucosamine B-1,4-galactosyltransferase. Preferential transfer of galactose on the G1cNAc31,2-Mana1,3- branch of a complex biantennary Asn-linked oligosaccharide. J. Biol. Chem. 259:4716–4721.PubMedGoogle Scholar
  37. Piller, F., Cartron, J-P., Maranduba, A., Veyrieres, A., Leroy, Y., and Fournet, B., 1984, Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc:GlcNAc-ß1–3Gal (G1cNAc to Gal) $1–6-N-acetylglucosaminyltransferase in hog gastric mucosa, J. Biol. Chem. 259:13385–13390.PubMedGoogle Scholar
  38. Rothman, J. E., 1985, The compartmental organization of the Golgi apparatus, Scientific American 253:74–89.PubMedCrossRefGoogle Scholar
  39. Sadler, J. E., 1984, Biosynthesis of glycoproteins: Formation of 0-linked oligosaccharides, in: “Biology of Carbohydrates”, Vol.2, V. Ginsburg and P. W. Robbins, eds., John Wiley & Sons, New York, pp. 199–288.Google Scholar
  40. Sawidou, G., Klein, M., Grey, A. A., Dorrington, K. J., and Carver, J. P., 1984, Possible role for peptide-oligosaccharide interactions in differential oligosaccharide processing at asparagine-107 of the light chain and asparagine-297 of the heavy chain in a monoclonal IgGlk, Biochemistry 23:3736–3740.CrossRefGoogle Scholar
  41. Schachter, H., and Williams, D., 1982, Biosynthesis of mucus glycoproteins, in: “Mucus in Health and Disease”, Vol.II, E. N. Chantier, J. B. Elder, and M. Elstein, eds., Adv. Exp. Medicine and Biology, Vol. 144, Plenum Press, New York and London, pp. 3–28.CrossRefGoogle Scholar
  42. Schachter H., McGuire, E. J., and Roseman, S., 1971, Sialic Acids. XIII. A uridine diphosphate D-galactose: mucin galactosyltransferase from porcine submaxillary gland, J. Biol. Chem. 246:5321–5328.PubMedGoogle Scholar
  43. Schachter, H., Narasimhan, S., Gleeson, P., and Vella, G. J., 1983, Control of branching during the biosynthesis of asparagine-linked oligosaccharides, Can. J. Biochem. Cell Biol. 61:1049–1066.PubMedCrossRefGoogle Scholar
  44. Schachter, H., Narasimhan, S., Gleeson, P., Vella, G., and Brockhausen, I., 1985, Glycosyltransferases involved in the biosynthesis of protein-bound oligosaccharides of the asparagineN-acetyl-D-glucosamine and serine(threonine)-N-acetyl-D-galactos-amine types, in: “The Enzymes of Biological Membranes,” Second Edition, Volume 2, Biosynthesis and Metabolism, A. N. Martonosi, ed., Plenum Press, New York, pp. 227–277.CrossRefGoogle Scholar
  45. Snider, M. D., 1984, Biosynthesis of glycoproteins: Formation of N-linked oligosaccharides, in: “Biology of Carbohydrates”, Vol. 2, V. Ginsburg and P. W. Robbins, eds., John Wiley & Sons, New York, pp. 163–198.Google Scholar
  46. Testa, U., Henri, A., Bettaieb, A., Titeux, M., Vainchenker, W., Tonthat, H., Docklear, M. C., and Rochant, H., 1982, Regulation of i-and I-antigenic expression in the K562 cell line, Cancer Res. 42:4694–4700.PubMedGoogle Scholar
  47. Van den Eijnden, D. H., Joziasse, D. H., Dorland, L., Van Halbeek, H., Vliegenthart, J. F. G., and Schmid, K., 1980, Specificity in the enzymic transfer of sialic acid to the oligosaccharide branches of bi-and triantennary glycopeptides of al-acid glycoprotein, Biochem. & Biophys. Res. Commum. 92:839–845.CrossRefGoogle Scholar
  48. Vella, G. J., Paulsen, H., and Schachter, H., 1984, Control of glycoprotein synthesis. IX. A terminal Mana1–3Manßl-sequence in the substrate is the minimum requirement for UDP-N-acetylglucosamine:a-D-mannoside (G1cNAc to Manal-3-) 82-N-acetylglucosaminyltransferase I, Can. J. Biochem. Ce115 Biol. 62:409–417.CrossRefGoogle Scholar
  49. Williams, D., and Schachter, H., 1980, Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates, J. Biol. Chem. 255:11247–11252.PubMedGoogle Scholar
  50. Williams, D., Longmore, G., Matta, K. L., and Schachter, H., 1980, Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-N-acetylglucosamine: Gal31–3GalNAc (G1cNAc to GalNAc) 86-N-acetylglucosaminyltransferase, J. Biol. Chem. 255:11253–11261.PubMedGoogle Scholar
  51. Yamashita, K., Kamerling, J. P., and Kobata, A., 1982, Structural study of the carbohydrate moiety of hen ovomucoid. Occurrence of a series of pentaantennary complex-type asparagine-linked sugar chains, J. Biol. Chem. 257:12809–12814.PubMedGoogle Scholar
  52. Yamashita, K., Hitoi, A., Matsuda, Y., Tsuji, A., Katunuma, N., and Kobata, A., 1983a, Structural studies of the carbohydrate moieties of rat kidney gamma-glutamyltranspeptidase. An extremely heterogeneous pattern enriched with nonreducing terminal N-acetylglucosamine residues, J. Biol. Chem. 258:1098–1107.Google Scholar
  53. Yamashita, K., Hitoi, A., Taniguchi, N., Yokosawa, N., Tsukada, Y., and Kobata, A., 1983b, Comparative study of the sugar chains of gamma-glutamyltranspeptidases purified from rat liver and rat AH-66 hepatoma cells, Cancer Res. 43:5059–5063.Google Scholar
  54. Yamashita, K., Hitoi, A., Tateishi, N., Higashi, T., Sakamoto, Y., and Kobata, A., 1983c, Organ-specific difference in the sugar chains of gamma-glutamyltranspeptidase, Arch. Biochem. Biophys. 225:993–996.CrossRefGoogle Scholar
  55. Yamashita, K., Kamerling, J. P., and Kobata, A., 1983d, Structural studies of the sugar chains of hen ovomucoid. Evidence indicating that they are formed mainly by the alternate biosynthetic pathway of asparagine-linked sugar chains, J. Biol. Chem. 258:3099–3106.Google Scholar
  56. Yamashita, K., Tachibana, Y., Hitoi, A., Matsuda, Y., Tsuji, A., Katunuma, N., and Kobata, A., 1983e, Difference in the sugar chains of two subunits and of isozymic forms of rat kidney gammaglutamyltranspeptidase, Arch. Biochem. Biophys. 227:225–232.CrossRefGoogle Scholar
  57. Yamashita, K., Tachibana, Y., Shichi, H., and Kobata, A., 1983f, Carbohydrate structures of bovine kidney gamma-glutamyltranspeptidase, J. Biochem. 93:135–147.Google Scholar
  58. Yamashita, K., Tachibana, Y., Hitoi, A., and Kobata, A., 1984, Sialic acid-containing sugar chains of hen ovalbumin and ovomucoid, Carbohydrate Res. 130:271–288.CrossRefGoogle Scholar
  59. Yamashita, K., Hitoi, A., Tateishi, N., Higashi, T., Sakamoto, Y., and Kobata, A., 1985a, The structures of the carbohydrate moieties of mouse kidney gamma-glutamyltranspeptidase: Occurrence of X-antigenic determinants and bisecting N-acetylglucosamine residues, Arch. Biochem. Biophys. 240:573–582.CrossRefGoogle Scholar
  60. Yamashita, K., Tachibana, Y., Ohkura, T., and Kobata, A., 1985b, Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation, J. Biol. Chem. 260:3963–3969.Google Scholar
  61. Zielenski, J., and Koscielak, J., 1983, Sera of I subjects have the capacity to synthesize the branched G1cNAc-ß(1–6)[GlcNAc-ß(1–3)]Gal…structure, FEBS Letters 163:114–118.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Harry Schachter
    • 1
  1. 1.Research Institute, Hospital for Sick Children, and Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations