Mammalian Gene Transfer and Gene Expression

  • Thomas E. Wagner
  • Xiao Z. Chen
  • William B. Hayes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 205)


It has long been the desire of molecular biologists to be able to study the regulation of expression of specific mammalian genes. With the advent of recombinant DNA technology and the availability of specific cloned genes, several new approaches to these studies have emerged. One of the most promising, which we will discuss in detail here, is the introduction of specific cloned genes into the genome of embryos and the development of adult animals from these embryos which also contain these cloned DNA sequences in their genomes. This whole animal system has many advantages. The genes may be present in a very native biological environment. If the gene is stably integrated and passed from generation to generation, a large number of similar animals would be available for study. As animals of all stages of development could be obtained, it should be possible to study specific developmental changes occurring within the integrated DNA. This information could be amplified by introducing genes with specific deletions or mutations to analyze which portions of the genes are important in genetic regulation and developmental control of these systems. The opportunities for this approach to the study of the regulation of expression of cloned genes in these whole animal systems seem extensive.


Transgenic Mouse Thymidine Kinase Transgenic Animal Insertional Mutagenesis Mouse Mammary Tumor Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baluda, M. A., and Drohan, W. M., 1972, Distribution of deoxyribonucleic acid complementary to the ribonucleic acid of avian myelobastosis virus in tissues of normal and tumor-bearing chickens, J. Virol. 10:1002–1009.PubMedGoogle Scholar
  2. Banerji, J., Olson, L., and Schaffner, W., 1983, A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes, Cell, 33:729–740.PubMedCrossRefGoogle Scholar
  3. Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV40 early promotor region, Nature 290(5804):304–310.PubMedCrossRefGoogle Scholar
  4. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E., 1984, Formation of germ-line chimeras from embryo-derived teratocarcinoma cell lines, Nature 309:255–256.PubMedCrossRefGoogle Scholar
  5. Breindl, M., Doehner, J., Willecke, K., Dausman, J., and Jaenisch, R., 1979, Germline integration of moloney leukemia virus: Identification of the chromosomal integration site, Proc. Natl. Acad. Sci. USA, 76:1938–1948.PubMedCrossRefGoogle Scholar
  6. Brinster, R. L., Chen, H. Y., Messing, A., Van Dyke, T., Levine, A. J., and Palmiter, R. D., 1984, Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors, Cell, 37:367–379.PubMedCrossRefGoogle Scholar
  7. Brinster, R. L., Chen, H. Y., Trumbauer, M., Senear, A., Warren, R., and Palmiter, R. D. 1981, Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs, Cell 27:223–231.PubMedCrossRefGoogle Scholar
  8. Brinster, R. L., Chen, H. Y., Trumbauer, M., Yagle, M. K., and Palmiter, R. D., 1985, Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs, Proc. Natl. Acad. Sci. USA 82:4438–4442.PubMedCrossRefGoogle Scholar
  9. Caruthers, M. H., Beaucage, S. L., Efcavitch, J. W., Fisher, E. F., Matteucci, M. D., and Stabinsky, Y., 1980, New chemical methods for synthesizing polynucleotides, Nucleic Acids Symp. Ser. 7:215–223.PubMedGoogle Scholar
  10. Caruthers, M. H., Beaucage, S. L., Efcavitch, J. W., Fisher, E. F., Goldman, R. A., deHaseth, P. L., Mandecki, W., Matteucci, M. D., Rosendahl, M. S., and Stabinsky, Y., 1982, Chemical synthesis and biological studies on mutated gene-control regions, Cold Spring Harbor Symp. Quant. Biol. 47(part 1):411–418.CrossRefGoogle Scholar
  11. Chada, K., Magram, J., Raphael, K., Radice G., Lacy, E., and Costantini, F., 1985, Specific expression of a foreign beta-globin gene in erythroid cells in transgenic mice, Nature 314:377–380.PubMedCrossRefGoogle Scholar
  12. Church, G. M., Ephrussi, A., Gilbert, W., and Tonegawa, S., 1985, Cell-type-specific contacts to Ig enhancers in nuclei, Nature 313:798–801.PubMedCrossRefGoogle Scholar
  13. Coleman, J., Green, P. J., and Inouye, M., 1984 The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes, Cell, 37:429–436.PubMedCrossRefGoogle Scholar
  14. Costantini, F., and Lacy, E., 1981, Introduction of a rabbit ß-globin gene into the mouse germ line, Nature 294:92–94.PubMedCrossRefGoogle Scholar
  15. Ephrussi, A., Church, G. M., Tonegawa, S., and Gilbert, W., 1985, B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo, Science 227:134–140.PubMedCrossRefGoogle Scholar
  16. Evans, M., 1984, personal communication.Google Scholar
  17. Evans, M. J., and Kaufman, M. H., 1981, Establishment in culture of pluripotential cells from mouse embryos, Nature 292:154–156.PubMedCrossRefGoogle Scholar
  18. Gillies, S. D., Morrison, S. L., Oi, V. T., and Tonegawa, S., 1983, A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene, Cell, 33:717–723.PubMedCrossRefGoogle Scholar
  19. Goff, S. P., Tabin, C. J., Wang, J. Y-J., Weinberg, R. A., and Baltimore, B., 1981, Transfection of fibroblasts by cloned Abelson murine leukemia virus DNA and recovery of transmissible virus by recombination with helper virus, J. Virol. 41:271:285.Google Scholar
  20. Goldfarb, M. P., and Weinberg, R. A., 1981, Structure of the provirus within NIH 3T3 cells transfected with Harvey sarcoma virus DNA, J. Virol. 38:125–135.PubMedGoogle Scholar
  21. Gordon, J. W., and Ruddle, F. H., 1981, Integration and stable germline transmission of genes injected into mouse pronuclei, Science 214:1244–1246.PubMedCrossRefGoogle Scholar
  22. Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., and Ruddle, F. H., 1980, Genetic transformation of mouse embryos by micro-injection of purified DNA, Proc. Natl. Acad. Sci. USA, 77(12):7380–7384.PubMedCrossRefGoogle Scholar
  23. Grosschedl, R., Weaver, D., Baltimore, D., and Costantini, F., 1984, Introduction of a p immunoglobulin gene into the mouse germ line: specific expression in lymphoid cells and synthesis of functional antibody, Cell, 38:647–658.PubMedCrossRefGoogle Scholar
  24. Gruss, P., Dhar, R., and Khoury, G., 1981, Simian virus 40 tandem repeated sequences as an element of the early promoter, Proc. Natl. Acad. Sci. USA 78:943–947.PubMedCrossRefGoogle Scholar
  25. Hammer, R. E., Palmiter, R. D., and Brinster, R. L., 1985, Partial correction of murine hereditary growth disorder by germline incorporation of a new gene, Nature 311:65–67.Google Scholar
  26. Hanahan, D., 1985, Heritable formation of pancreatic beta-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes, Nature 315:115–122.PubMedCrossRefGoogle Scholar
  27. Harbers, K., Keuhn, M., Delius, H., and Jaenisch, R., 1984, Insertion of retrovirus into the first intron of 1(I) collagen gene lead to embryonic lethal mutation in mice, Proc. Natl. Acad. Sci. USA 81:1504–1508.PubMedCrossRefGoogle Scholar
  28. Izant, J. G., and Weintraub, H., 1984, Inhibition of thymidine kinase gene expression by antisense RNA: A molecular approach to genetic analysis, Cell, 36:1007–1015.PubMedCrossRefGoogle Scholar
  29. Jaenisch, R., Harbers, K., Schnieke, A., Lohler, J., Chumakov, I., Jahner, D., Grotkopp D., and Hoffman, E., 1983, Germline integration of Moloney murine leukemia virus at the Mov13 locus leads to recessive lethal mutation and early embryonic death, Cell, 32:209–216.PubMedCrossRefGoogle Scholar
  30. Jaenisch, R., 1976, Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus, Proc. Natl. Acad. Sci. USA, 73:1260–1264.PubMedCrossRefGoogle Scholar
  31. Jaenisch, R., 1977, Germ line integration of Moloney leukemia virus: Effect of homozygosity at the M-MuLV locus, Cell, 12:691–696.PubMedCrossRefGoogle Scholar
  32. Jaenisch, R., 1979, Moloney leukemia virus gene expression and amplification in preleukemic and leukemic BALB/Mo mice, Virology 93:80–90.PubMedCrossRefGoogle Scholar
  33. Jaenisch, R., Fan, H. C., and Crocker, R., 1975, Infection of preimplantation mouse embryos and of newborn mice with leukemia virus: Tissue distribution, Proc. Natl. Acad. Sci. USA 72:4008–4012.PubMedCrossRefGoogle Scholar
  34. Jaenisch, R., Jahner, D., Nobis, P., Simon, I., Lohler, J., Harbers, K, and Grotkopp, D., 1981, Chromosomal position and activation of retroviral genomes inserted into the germ line of mice, Cell, 24:519–529.PubMedCrossRefGoogle Scholar
  35. Jaenisch, R., and Mintz, B., 1974, Simian Virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA, Proc. Natl. Acad. Sci. USA 71:1250–1254.PubMedCrossRefGoogle Scholar
  36. Jahner, D., and Jaenisch, R., 1980, Integration of Moloney leukemia virus into the germ line of mice: Correlation between site of integration and virus activation, Nature 287:456–458.PubMedCrossRefGoogle Scholar
  37. Jahner, D., Stuhlmann, H., Stewart, C. L., Barbers, K., Lohler, J., Simon, I., and Jaenisch, R., 1982, De novo methylation and expression of retroviral genomes during mouse embryogenesis, Nature 298:623–628.PubMedCrossRefGoogle Scholar
  38. Karin, M., Haslinger, A., Holtgreve, H., Richards, R., Krauter, P., Westphal, H., and Beato, M., 1984, Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene, Nature 108:513–519.CrossRefGoogle Scholar
  39. Katzenellenbogen, B. S., Miller, M. A., Eckert, R. L., and Sudo, K., 1983, Antiestrogen pharmacology and mechanism of action, J. Steroid Biochemistry 19(1A):59–68.CrossRefGoogle Scholar
  40. Khoury, G, and Gruss, P., 1983, Enhancer elements, Cell, 33:313–314.PubMedCrossRefGoogle Scholar
  41. Krumlauf, R., Hammer, R. E., Tilghman, S. M., Brinster, R. L., 1985, Development of a-fetalprotein genes in transgenic mice, Mol. Cell. Biol., 5:1639–1648.PubMedGoogle Scholar
  42. Kunkle, M., Longo, F. J., and Magun, B. E., 1978, Nuclear protein changes in the maternally and paternally derived chromatin at fertilization, J. Exp. Zool. 203:371–380.PubMedCrossRefGoogle Scholar
  43. Lacy, E., Roberts, S., Evans, E. P., Burtenshaw, M. D., and Costantini, F. D., 1983, A foreign beta-globin gene in transgenic mice: Integration at abnormal chromosomal positions and expression in inappropriate tissues, Cell, 34:343–358.PubMedCrossRefGoogle Scholar
  44. Laskey, R. A., Honda, B. M., Mills, A. D., Morris, N. R., Wyllie, A. H., Mertz, J. E., DeRoberts, E. M., and Gurdon, J. D., 1977, Chromatin assembly and transcription in eggs and oocytes of Xenopus laevis, Cold Spring Harbour Symp. Quant. Biol. 42:171–178.CrossRefGoogle Scholar
  45. Law, L. W., and Moloney, J. B., 1961, Studies of congenital transmission of a leukemia virus in mice, Proc. Soc. Exp. Biol. and Med. 108:715–723.Google Scholar
  46. Leder, P., 1985, personal communication.Google Scholar
  47. Longo, F. J., and Kunkle, M., 1977, Synthesis of RNA by male pronuclei of fertilized sea urchin eggs, J. Exp. Zool. 201:431–438.PubMedCrossRefGoogle Scholar
  48. Mann, R. C., Mulligan, R. C., and Baltimore, D., 1983, Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus, Cell, 33:153–159.PubMedCrossRefGoogle Scholar
  49. Martin, G. R., 1981, Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teritocarcinoma stem cells, Proc. Natl. Acad. Sci. USA 78:7634–7638.PubMedCrossRefGoogle Scholar
  50. McKnight, G. S., Hammer, R. E., Kuenzel, E. A., and Brinster, R. L., 1983, Expression of the chicken transferrin gene in transgenic mice, Cell, 34:335–341.PubMedCrossRefGoogle Scholar
  51. Messing, A., Chen, H. Y., Palmiter, R. D., Brinster, R. L., 1985, Peripheral neuropathies, hepatocellular, carcinomas, and islet cell adenomas in transgenic mice, Nature 316:461–463.PubMedCrossRefGoogle Scholar
  52. Mintz, B., and Cronmiller, C., 1981, Nett-1: A karyotypical normal in vitro line of developmentally totipotent mouse teritocarcinoma cells, Somatic Cells Genet. 7:489–505.CrossRefGoogle Scholar
  53. Mizuno, T., Chou, M-Y, and Inouye, M., 1984, A unique mechanism regulating gene expression: Translational inhibition by a complementary RNA transcript (micRNA), Proc. Natl. Acad. Sci. USA 81:1966–1970.PubMedCrossRefGoogle Scholar
  54. Moore, D. D., Marks, A. R., Buckley, D. I., Kapler, G., Payvar, F., and Goodman, H. M., 1985, The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor, Proc. Natl. Acad. Sci. USA, 82(3):699–702.PubMedCrossRefGoogle Scholar
  55. Nusslein-Volhard, C., and Wieschaus, E., 1980, Stations affecting segment number and polarity in drosophila, Nature 287:795–801.PubMedCrossRefGoogle Scholar
  56. Ornitz, D. M., Palmiter, R. D., Hammer, R. E., Brinster, R. L., Swift, G. H., and MacDonald, R. J., 1985, Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells of transgenic mice, Nature 313(6003):600–602.PubMedCrossRefGoogle Scholar
  57. Palmiter, R. D., and Brinster, R. L., 1985, Transgenic Mice, Cell, 41:343–345.PubMedCrossRefGoogle Scholar
  58. Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C., and Evans, R. M., 1982a, Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes, Nature 300:611–615.CrossRefGoogle Scholar
  59. Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E., and Brinster, R. L., 1983, Metallothionein-human GH fusion genes stimulate growth of mice, Science 222:809–814.PubMedCrossRefGoogle Scholar
  60. Palmiter, R. D., Chen, H. Y., and Brinster, R. L., 1982b, Differential regulation of metallothionein thymidine kinase fusion genes in transgenic mice and their offspring, Cell 29:701–710.CrossRefGoogle Scholar
  61. Palmiter, R. D., Wilkie, T. M., Chen, H. Y., and Brinster, R. L., 1984, Transmission distortion and mosaicism in an unusual transgenic mouse pedigree, Cell 36:869–877.PubMedCrossRefGoogle Scholar
  62. Perkins, A. S., Kirschmeier, P. T., Gattoni-Celli, S., and Weinstein, I. B., 1983, Design of a retrovirus-derived vector for expression and transduction of exogenous genes in mammalian cells, Mol. Cell Biol. 3:1123:1132.Google Scholar
  63. Perucho, M., Hanahan, D., and Wigler, M., 1980, Genetic and physical linkage of exogenous sequences in transformed cells, Cell 22:309–317.PubMedCrossRefGoogle Scholar
  64. Queen, C., and Baltimore, D., 1983, Immunoglobulin gene transcription is activated by downstream sequence elements, Cell, 33:741–750.PubMedCrossRefGoogle Scholar
  65. Reik, W., Weiher, H., and Jaenisch, R., 1985, Replication-competent Moloney murine leukemia virus carrying a bacterial suppressor tRNA gene: Selective cloning of proviral and flanking host sequences, Proc. Natl. Acad. Sci. USA 82:1141–1145.PubMedCrossRefGoogle Scholar
  66. Ringold, G. M., 1983, Regulation of mouse mammary tumor virus gene expoion by glucocorticoid hormones, Curs. Topics Microbiol. Immunol. 106:79–103.CrossRefGoogle Scholar
  67. Ritchie, K. A., Brinster, R. L., and Storb, U., 1984, Allelic exclusion and control of endogenous immunoglobulin gene rearrangement in kappa transgenic mice, Nature 312:517–520.PubMedCrossRefGoogle Scholar
  68. Robbins, D. M., Ripley, S., Hendeson, A., and Axel, R., 1981, Transforming DNA integrates into the host chromosome, Cell, 23:29–39.CrossRefGoogle Scholar
  69. Rochefort, H., Borgna, J. L., and Evans, F., 1983, Cellular and molecular mechanism of action of antiestrogens, J. Steroid Biochem. 19:69–74.PubMedCrossRefGoogle Scholar
  70. Rosenberg, U. B., Preiss, A., Seifer, E., Jackie, H., and Knipple, D. C., 1985, Production of phenocopies by Kruppel antisense RNA injection into Drosophila embryos, Nature 313:703–706.PubMedCrossRefGoogle Scholar
  71. Rusconi, S., and Kohler, G., 1985, Transmission and expression of a specific pair of rearranged immunoglobin u and K genes in a transgenic mouse line, Nature 314:330–334.PubMedCrossRefGoogle Scholar
  72. Scheidereit, C., Geisse, S., Westphal, H. M., Beato, M., 1983, The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor virus, Nature 304:749–752.PubMedCrossRefGoogle Scholar
  73. Schneike, A., Harbers, K., and Jaenisch, R., 1983, Embryonic lethal mutation in mice induced by retrovirus insertion into the a1(I) collagen gene, Nature 304:315–320.CrossRefGoogle Scholar
  74. Selden, R. F., Wagner, T. E., Yun, J. S., Moore, D. D., and Goodman, H., 1985, Glucocorticoid regulation of human growth hormone expression in transgenic mice, submitted.Google Scholar
  75. Shani, M., 1985, Tissue-specific expression of rat myosin light-chain 2 gene in transgenic mice, Nature 314(6008):283–286.PubMedCrossRefGoogle Scholar
  76. Simons, R. W., and Kleckner, N., 1983, Translational control of IS 10 transposition, Cell 34:683–691.PubMedCrossRefGoogle Scholar
  77. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S., 1985, Insertion of DNA sequences into the human chromosomal 8-globin locus by homologous recombination, Nature 317:230–234.PubMedCrossRefGoogle Scholar
  78. Stewart, T. A., and Mintz, B., 1981, Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells, Proc. Natl. Acad. Sci. USA 78:6314–6318.PubMedCrossRefGoogle Scholar
  79. Stewart, T. A., Pattengale, P. K., and Leder, P., 1984, Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes, Cell, 38:627–637.PubMedCrossRefGoogle Scholar
  80. Stewart, T. A, Wagner, E. F., and Mintz, B., 1982, Human 8-globin gene sequences injected into mouse eggs, retained in adults, and transmitted to progeny, Science 217:1046–1048.CrossRefGoogle Scholar
  81. Storb, U., O’Brien, R. L., McMullen, M. D., Gollahon, K. A., and Brinster, R. L., 1984, High expression of cloned immunoglobulin kappa gene in transgenic mice is restricted to B lymphocytes, Nature 310(5974):238–241.PubMedCrossRefGoogle Scholar
  82. Stuhlmann, H., Cone, R., Mulligan, R. C., and Jaenisch, R., 1984, Introduction of a selectable gene into different animal tissue by a retrovirus recombinant vector, Proc. Natl. Acad. Sci. USA 81:7151–7155.PubMedCrossRefGoogle Scholar
  83. Stuhlmann, H., Jahner, D., and Jaenisch, R., 1981, Infectivity and methylation of retroviral genomes is correlated with expression in the animal, Cell, 26:221–232.PubMedCrossRefGoogle Scholar
  84. Swift, G. H., Hammer, R. E., MacDonald, R. J., and Brinster, R. L., 1984, Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice, Cell 38:639–646.PubMedCrossRefGoogle Scholar
  85. Tabin, C. J., Hoffman, J. W., Goff, S. P., and Weinberg, R. A., 1982, Adaptation of a retrovirus as a eucaryotic vector transmitting the herpes simplex virus thymidine kinase gene, Mol. Cell Biol. 2:426–436.PubMedGoogle Scholar
  86. Tate, A. C., Greene, G. L., DeSoombre, E. R., Jensen, E. V., and Jordan, V. C., 1984, Differences between estrogen-and antiestrogenestrogen receptor complexes from human breast tumors identified with an antibody raised against the estrogen receptor, Cancer Research 44:1012–1018.PubMedGoogle Scholar
  87. Temin, H. M., 1982, Function of the retrovirus long terminal repeat, Cell, 28(1):3–5.PubMedCrossRefGoogle Scholar
  88. Townes, T., Lingrel, L., Chen, H., Brinster, R., and Palmiter, R., 1985, Erythroid specific expression of human ß-globin genes in transgenic mice, Eur. Mol. Biol. Org. J., 4:1715–1724.Google Scholar
  89. van der Putten, H., Botteri, F. M., Miller, A. D., Rosenfeld, M. G., Fan, H., Evans, R. M., and Verma, I. M., 1985, Efficient insertion of genes into the mouse germ line via retroviral vectors, Proc. Natl. Acad. Sci. USA 82:6148–6152.PubMedCrossRefGoogle Scholar
  90. Wagner, E. F., Covarrabias, L., Stewart, T. A., and Mintz, B., 1983, Prenatal lethalities in mice homozygous from human growth hormone gene sequences integrated in the germ line, Cell, 35:647–655.PubMedCrossRefGoogle Scholar
  91. Wagner, E., Stewart, T., and Mintz, B., 1981b, The human ß-globin gene and a functional viral thymidine kinase gene in developing mice, Proc. Natl. Acad. Sci. USA 78:5016–5020.CrossRefGoogle Scholar
  92. Wagner, T., Hoppe, P., Jollick, J., Scholl, D., Hodinka, R., and Gault, J., 1981a, Microinjection of a rabbit ß-globin gene into zygotes and its subsequent expression in adult mice and their offspring, Proc. Natl. Acad. Sci. USA 78:6376–6380.CrossRefGoogle Scholar
  93. Wagner, T. E., Murray, F. A., Minhas, B., and Kraemer, D. C., 1984, The possibility of transgenic livestock, Theriogenology 21:29–44.CrossRefGoogle Scholar
  94. Wagner, T. E., Van Blerkom, J., and Jollick, J. D., 1982, Gene chimeric mammals: Mice developed from zygotes microinjected with rabbit 8-globin genes producing rabbit globin, DNA, 1:165–166.Google Scholar
  95. Wagner, T. E., and Jochle, W., 1985, Recombinant Gene Transfer in Animals: The potential for improving growth in livestock, in: “Control and Manipulation of Animal Growth,” P. J. Buttery, ed., Butterworth Press, London (in press).Google Scholar
  96. Wakeling, A. E., Valcaccia, B., Newbolilt, E., and Green L. R., 1984, Non-steroidal antiestrogens--receptor binding and biological response in rat uterus, rat mammary carcinoma and human breast cancer cells, J. Steroid Biochemistry 20:111–120.CrossRefGoogle Scholar
  97. Wei, C., Gibson, M., Spear, P. G., and Scolnick, E. M., 1981, Construction and isolation of a transmissible retrovirus containing the src gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1, J. Virol. 39:935–944.PubMedGoogle Scholar
  98. Zamecnik, P. C., and Stephenson, M. L., 1978, Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide, Proc. Natl. Acad. Sci. USA 75:280–284.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Thomas E. Wagner
    • 1
  • Xiao Z. Chen
    • 1
  • William B. Hayes
    • 1
  1. 1.Graduate Program in Molecular and Cellular BiologyOhio UniversityAthensUSA

Personalised recommendations