Structure and Expression of Human Placental Hormone Genes

  • Irving Boime
  • Mark Boothby
  • Robert B. Darnell
  • Paul Policastro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 205)


One of the important functions of the human placenta is to produce peptide hormones during pregnancy; e.g. human chorionic gonadotropin (hCG) and human placental lactogen (hPL). The appearance of these hormones in maternal serum during pregnancy is quite different. Whereas hCG peaks in the first trimester, hPL reaches maximal levels at term. Since the levels of these hormones differ during the course of gestation, it is apparent that the factors controlling their synthesis are not the same. Thus the human placenta represents a convenient and unique tissue for studying expression of human hormonal genes during development.


Chorionic Gonadotropin Human Chorionic Gonadotropin Human Placenta Sodium Butyrate Chloramphenicol Acetyl Transferase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahl, O., 1977, Human chorionic gonadotropin, its receptor and mechanism of Action, Fed. Proc. 36:2119–2129.PubMedGoogle Scholar
  2. Bannerji, J., Olson, L., and Schaffner, W., 1983, A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes, Cell, 33: 729–740.CrossRefGoogle Scholar
  3. Boorstein, W., Vamvakopoulos, N., and Fiddes, J., 1982, Human chorionic gonadotropin is encoded by at least light genes arranged in tandem and inverted pairs, Nature 300: 419–422.Google Scholar
  4. Boothby, M., Kukowska, J., and Boime, I., 1983, Imbalanced synthesis of human choriogonadotropin and subunits reflects the steady-state levels of the corresponding mRNAs, J. Biol. Chem. 258:9250–9253.Google Scholar
  5. Boothby, M., Ruddon, R., Anderson, C., McWilliams, D., and Boime, I., 1981, A single gonadotropin a-subunit gene in normal tissue and tumor-derived cell lines, J. Biol. Chem. 256:5121–5127.Google Scholar
  6. Chandler, V. L., Maler, B. A., and Yamamato, K. R., 1983, DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promotor hormone responsive in vivo, Cell 33:489–499.Google Scholar
  7. Chin, W., Maloof, F., Habener, J., 1981, Thyroid-stimulating hormone biosynthesis, J. Biol. Chem. 256:3059–3066.Google Scholar
  8. Chou, J. Y., 1978, Establishment of clonal human placental cells synthesizing human choriogonadotropin, Proc. Natl. Acad. Sci. USA, 75:1854–1858.Google Scholar
  9. Darnell, R. B., 1984, Independent regulation by sodium butyrate of gonadotropin alpha gene expression and cell cycle progression in HeLa cells, Mol. Cell. Biol. 4:829–839.Google Scholar
  10. Enders, A., 1965, Formation of syncytium from cytotrophoblast in the human placenta, Obstet. Gynecol. 25:378–386.Google Scholar
  11. Fetherston, J., and Boime, I., 1982, Synthesis of bovine lutropin in cell-free lysates containing pituitary microsomes, J. Biol. Chem. 257:8143–8147.Google Scholar
  12. Fiddes J., and Goodman, H., 1981, The gene encoding the common a-subunit of the four human glycoprotein hormones, J. Molec. Appl. Genet. 1:3–18.Google Scholar
  13. Gaspard, V., Hustin, J., and Rentes, A., 1980, Immunofluorescent localization of placental lactogen, chorionic gonadotropin and its a-and ß-subunits in organ cultures of human placenta, Placenta 1: 135–148.Google Scholar
  14. Gillies, S. D., Morrison, S. L., Oi, V. T., and Tonegawa, S., 1983, A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene, Cell, 33: 717–728.PubMedCrossRefGoogle Scholar
  15. Gorman, C. M., Merlino, G. T., Willingham, M. C., Pastan, I., and Howard, B. H., 1982b, The rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection, Proc. Natl. Acad. Sci. USA 79:6777–6781.Google Scholar
  16. Gorman, C. M., Moffat, L. F., and Howard, B. H., 1982a, Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells, Mol. Cell. Biol. 2:1044–1051.Google Scholar
  17. Goustin, A., Betsholtz, C., Ohlsson, S., Persson, H., Rydnect, J., Bywater, M., Holmgren, G., Heldin, C., Westermak, B., and Ohlsson, R., 1985, Co-expression of the sis and myc proto-oncogenes in developing human placenta suggests autocrine control of trophoblast growth, Cell, 41: 301–312.PubMedCrossRefGoogle Scholar
  18. Gurr, J., and Kourides, I., 1983, Regulation of thyrotropin biosynthesis, J. Biol. Chem. 258:10208–10211.Google Scholar
  19. Hoshina, M., Boothby, M. and Boime, I., 1982, Cytological localization of chorionic gonadotropin a and placental lactogen mRNAs during development of the human placenta, J. Cell Biol. 93:190–198.Google Scholar
  20. Hoshina, M., Boothby, M., Hussa, R., Pattillo, R., Camel, H., and Boime, I., 1985, Linkage of human chorionic gonadotropin and placental lactogen biosynthesis to trophoblast differentiation and tumorigenesis, Placenta 6: 163–172.Google Scholar
  21. Hoshina, M., Hussa, R., Pattillo, R., and Boime, I., 1983, Cytological distribution of chorionic gonadotropin subunit and placental lactogen mRNA in neoplasms derived from human placenta, J. Cell Biol. 97:1200–1206.Google Scholar
  22. Hoshina, M., Boothby, M., Hussa, R., Pattillo, R., Camel, M., and Boime, I., 1984, Segregation patterns of polymorphic restriction sites of the gene encoding the a-subunit of human chorionic gonadotropin in trophoblastic disease, Proc. Natl. Acad. Sci. USA 81:2504–2507.Google Scholar
  23. Howard, B. H., 1983, Vectors for introducing genes into cells of higher eukaryotes, Trends in Biochem. Sci. 8:209–212.Google Scholar
  24. Hussa, R. O., 1980, Biosynthesis of human chorionic gonadotropin, Endocrine Rev. 1: 268–294.Google Scholar
  25. Hussa, R., Pattillo, R. Rueckert, A., Scheuerman, K., 1978, Effects of butyrate and dibutyryl cyclic AMP on hCG-secreting trophoblastic and non-trophoblastic cells, J. Clin. Endocrinol. Metab. 46: 69–76.Google Scholar
  26. Karin, M., Haslinger, A., Holtgreve, H., Richards, R., Krauter, P., Westphal, H. M., Beato, M., 1984, Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIa gene, Nature 308: 513–519.Google Scholar
  27. Kidd, V., and Saunders, G., 1982, Linkage arrangement of human placental lactogen and growth hormone genes, J. Biol. Chem. 257:10673–10680.Google Scholar
  28. Majors, J., and Varmus, H., 1983, A small region of the mouse mammary tumor virus long terminal repeat confers glucocorticoid hormone regulation on a linked heterologous gene, Proc. Natl. Acad. Sci. USA, 80:5866–5870.Google Scholar
  29. Midgely, A. R., Jr., Pierce, G. B., Jr., Deneau, G. A., and Gosling, J. R. G., 1963, Morphogenesis of syncytiotrophoblast in vivo: An autoradiographic demonstration, Science 141: 349–350.Google Scholar
  30. Moore, D., Conkling, M., and Goodman, H., 1982, Human growth hormone: A multigene family, Cell, 29: 285–288.Google Scholar
  31. Morgan, F., Birken, S., and Canfield, R., 1975, The amino acid sequence of human chorionic gonadotropin, J. Biol. Chem. 250:5247–5258.Google Scholar
  32. Morgan F., Canfield, R., Vaitukaitis, J., and Ross, G., 1974, Properties of the subunits of human chorionic gonadotropin, Endocrinology 94: 1601–1606.Google Scholar
  33. Muller, R., Tremblsy, J., Adamson, E., and Verma, I., 1983, Tissue and cell type expression of two human c-onc genes, Nature 304: 454–456.Google Scholar
  34. Owerbach, D., Rutter, W., Martial, J., Baxter, J., and Shows, T., 1980, Genes for growth hormone, chorionic somatomammotropin and growth hormone-like gene on chromosome 17 in humans, Science 209: 289–292.Google Scholar
  35. Pfeifer-Ohlsson, S., Goustin, A., Rydnect, J., Bjersing, L., Wahlstrom, T., Stehlin, P., and Ohlsson, R., 1984, Spatial and temporal pattern of cellular myc oncogene expression in developing human placenta: Implications for embryonic cell proliferation, Cell, 38: 585–596.Google Scholar
  36. Pierce, G., and Midgley, A., 1963, The origin and function of human syncytiotrophoblastic giant cells, Amer. J. Pathol. 43:153–173.Google Scholar
  37. Policastro, P., Daniels-McQueen, S., Carle, G., Boime, I., A map of hCGß-LH8 gene cluster, J. Biol. Chem. in press.Google Scholar
  38. Policastro, P., Ovitt, C., Hoshina, M., Fukuoka, H., Boothby, M., and Boime, I., 1983, The 8-subunit of human chorionic gonadotropin is encoded by multiple genes, J. Biol. Chem. 258:11492–11499.Google Scholar
  39. Queen, C., and Baltimore, D., 1983, Immunoglobulin gene transcription is activated by downstream sequence elements, Cell, 33: 741–748.PubMedCrossRefGoogle Scholar
  40. Ruddon, R., Anderson, C., and Meade-Coburn, K., 1980, Stimulation of synthesis and secretion of chorionic gonadotropin subunits by eutopic and ectopic hormone-producing human cell lines, Cancer Res., 40: 4519.Google Scholar
  41. Ruddon, R., Anderson, C., Meade, K., Aldenferer, P., and Neuwald, P., 1979, Content of gonadotropins in cultured human malignant cells and effects of sodium butyrate treatment on gonadotropin secretion of HeLa cells, Cancer Res. 39: 3885–3892.Google Scholar
  42. Ruddon, R., Hortel, R., Peters, B., Anderson, C., Huot, R., and Stromberg, K., 1981, Biosynthesis and secretion of chorionic gonadotropin subunits by organ cultures of first trimester placenta, J. Biol. Chem. 256:11389–11392.Google Scholar
  43. Selvanayagam, C., Tsai, S., Tsai, M., Selvanayagam, P., and Saunders, G., 1984, Multiple origins of transcription for the human placental lactogen genes, J. Biol. Chem. 259:14642–14646.Google Scholar
  44. Stanbridge, E. J., Channing, J. D., Doerson, C., Nishimi, R. Y., Pechl, D. M., Weissman, B. E., and Wilkinson, J. E., 1982, Human cell hybrids: Analysis of transformation and tumorigenicity, Science 215: 252–259.Google Scholar
  45. Talmadge, K., Boorstein, W., Vamvakopoulos, N., Gething, M., and Fiddes, J., 1984, Only 3 of the 7 human chorionic gonadotropin beta subunit genes can be expressed in the placenta, Nucleic Acids Res. 12:8415–8436.Google Scholar
  46. Talmadge, K., Vamvakopoulos, M., and Fiddes, J., 1984, Evolution of human chorionic gonadotropin beta-subunit: Gene sequence comparison with human luteinizing hormone beta-subunit, Nature 307: 37–40.Google Scholar
  47. Vaitukaitis, J., 1974, Changing placental concentrations of human chorionic gonadotropin and its subunits during gestation, J. Clin. Endocrinol. Metabolism 38:755–760.Google Scholar
  48. Walker, M. D., Edlund, T., Boulet, A. M., and Rutter, W. J., 1983, Cell-specific expression controlled by the 5’-flanking region of insulin and chymotrypsin genes, Nature 306: 557–561.Google Scholar
  49. Wynn, R., 1972., Cytotrophoblastic specialization: An ultrastructural study of the human placenta, Am. J. Obstet. Gynecol. 114:339–355.Google Scholar
  50. Young, R., Hagenbuchle, and Schibler, V., 1981, A single mouse a-amylase gene specifies two different tissue-specific mRNAs, Cell 23: 451–460.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Irving Boime
    • 1
  • Mark Boothby
    • 1
  • Robert B. Darnell
    • 1
  • Paul Policastro
    • 1
  1. 1.Departments of Pharmacology and Obstetrics and GynecologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations