Chromatin Structure and Gene Expression in Germ Line and Somatic Cells

  • Mark Groudine
  • Maxine Linial
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 205)


The paternal genome is, according to recent reports, somehow marked for selective expression during early development. For example, the male pronucleus is essential for the formation of the extraembryonic layers during embryogenesis of the mouse (Surani et al., 1984; McGrath and Solter, 1984). In addition, the paternal X chromosome is selectively inactivted in the extraembryonic tissues of various species (West et al., 1977; Takagi et al., 1978; Harper et al., 1982). Thus, while it is formally possible that paternal DNA is completely reprogrammed on fertilization by components of the egg, there is evidence for the templating of information for differential gene expression by some component of sperm. We have initiated a series of experiments to determine whether the structure of sperm chromatin or the pattern of methylation of sperm DNA (or both) might provide a basis for the templating of information important in the selective expression of patenal genes early in development. The rationale for these experiments is based on observations concerning the relationship between chromatin structure and gene expression in somatic cells.


Globin Gene Mature Sperm Sperm Chromatin Hypersensitive Site Paternal Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, Y., and Kato, S., 1974, Two cell lines from lymphomas of Marek’s disease, Biken. J., 17: 105–116.PubMedGoogle Scholar
  2. Alberts, B. M., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J., 1983, “Molecular Biology of the Cell,” Garland Publishing, Inc., New York, pp. 689–690, 834–890.Google Scholar
  3. Astrin, S. M., Robinson, H. L., Crittenden, L. B., Buss, E. G., Wyban, J., and Hayward, W. S., 1980, Ten genetic loci in the chicken that contain structural genes for endogenous avian leukosis viruses, Cold Spring Harbor Symp. Quant. Biol., 44: 1105–1109.Google Scholar
  4. Behe, M., and Felsenfeld, G., 1981, Effects of methylation on a synthetic polynucleotide: The B-Z transition in poly(dG m5-dC)-poly(dG m5dC), Proc. Natl. Acad. Sci. USA, 78: 1619–1623.PubMedCrossRefGoogle Scholar
  5. Behe, M., Zimmerman, S., and Felsenfeld, G., 1981, Changes in the helical repeat of poly(dG m5dC)-poly(dG m5dC) and poly(dGdC)-polyGdc associated with the B-Z transition, Nature, 293: 233–235.PubMedCrossRefGoogle Scholar
  6. Bellve, A. R., 1979, “Oxford Review of Reproductive Biology”, C. Finn, ed., Oxford University Press, London, 1:159–261.Google Scholar
  7. Bellve, A. R., and O’Brian, D. A., 1983, “Mechanisms and Control of Animal Fertilization,” J. F. Hartmann, ed., Academic Press, New York, pp. 5b-137.Google Scholar
  8. Bellve, A. R., Cavicchia, J. C., Millette, C. F., O’Brian, D. A., Bhatnagar, Y. M., and Dym, M., 1977, Spermatogenic cells of the prepuberal mouse: Isolation and morphological characterization, J. Cell Biol., 74: 68–85.PubMedCrossRefGoogle Scholar
  9. Conklin, K. F., and Groudine, M., 1984, Chromatin structure and gene expression, in: “DNA Methylation and Biological Significances,” A. Razin, H. Cedar, and A. Riggs, eds., Springer-Verlag, New York, pp. 293–351.Google Scholar
  10. Conklin, K. F., Coffin, J. M., Robinson, H. J., Groudine, M., and Eisenman, R., 1982, Role of methylation in the induced and spontaneous expression of the avian endogenous virus ev-1: DNA structure and gene products, Mol. Cell Biol., 2: 638–652.Google Scholar
  11. Curran, T., Peters, G., Van Beveren, C., Teich, N. M., and Verma, I. M., 1982, FBJ murine osteosarcoma virus: Identification and molecular cloning of biologically active proviral DNA, J. Virol., 44: 674–682.PubMedGoogle Scholar
  12. Dani, C., Blanchard, J. M., Piechaczyk, M., El Sabouty, S., Marty, L., Jeanteur, P., 1984, Extreme instability of myc mRNA in normal and transformed human cells, Proc. Natl. Acad. Sci. USA, 81: 7046–7050.PubMedCrossRefGoogle Scholar
  13. Distel, R. J., Kleene, K. C., and Hecht, N. B., 1984, Haploid expression of a mouse testis alpha-tubulin gene, Science, 224: 68–70.PubMedCrossRefGoogle Scholar
  14. Dugaiczyk, A., Haron, J. A., Stone, E. M., Dennison, 0. E., Rothblum, K. N., and Schwartz, R. J., 1983, Cloning and sequencing of a deoxyribonucleic acid copy of glyceraldehyde-3-phosphate dehydrogenase messenger ribonucleic acid isolated from chicken muscle, Biochemistry, 22: 1605–1613.Google Scholar
  15. Elgin, S. C., 1981, DNase I-hypersensitive sites of chromatin, Cell, 27: 413–415.PubMedCrossRefGoogle Scholar
  16. Emerson, B. M. and Felsenfeld, G., 1984, Specific factor conferring nuclease hypersensitivity at the 5’ end of the chicken adult ß-globin gene, Proc. Natl. Acad. Sci. USA, 81: 95–99.PubMedCrossRefGoogle Scholar
  17. Fisher, E. F., and Caruthers, M. H., 1979, Studies on gene control regions. XII: The functional significance of a lac operator constitutive mutation, Nucl. Acids Res., 7: 401–416.CrossRefGoogle Scholar
  18. Garry, R., Moyer, M., Bishop, J., Moyer, R., and Waite, M., 1981, Transformation parameters induced in chick cells by incubation in media of altered NaCl concentration, Virology, 111: 427–439.PubMedCrossRefGoogle Scholar
  19. Cinder, G., Whitters, M., Kelley, K., and Chase, R., 1983, “Hemoglobin Switching,”, G. Stamatoyannopoulos, A. Neinhuis, eds., Liss, New York, pp. 463–474.Google Scholar
  20. Groudine, M., and Casimir, C., 1984, Post-transcriptional regulation of the chicken thymidine kinase gene, Nucl. Acids Res., 12: 1427–1446.CrossRefGoogle Scholar
  21. Groudine, M., and Conklin, K., 1985, Chromatin structure and de novo methylation of sperm DNA: Implications for activation of the paternal genome, Science, 228: 1061–1068.PubMedCrossRefGoogle Scholar
  22. Groudine, M., and Weintraub, H., 1975, Rous sarcoma virus activates embryonic globin genes in chicken fibroblasts, Proc. Natl. Acad. Sci. USA, 72: 4464–4468.PubMedCrossRefGoogle Scholar
  23. Groudine, M., and Weintraub, H., 1980, Activation of cellular genes by avian RNA tumor viruses, Proc. Natl. Acad. Sci. USA, 77: 5351–5354.PubMedCrossRefGoogle Scholar
  24. Groudine, M., and Weintraub, H., 1981, Activation of globin genes during chicken development, Cell, 24: 393–401.PubMedCrossRefGoogle Scholar
  25. Groudine, M., and Weintraub, H., 1982, Propagation of globin DNase I hypersensitive sites in absence of factors required for induction: A possible mechanism for determination, Cell, 30: 131–139.PubMedCrossRefGoogle Scholar
  26. Groudine, M., Eisenman, R., and Weintraub, H., 1981, Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation, Nature, 292: 311–317.PubMedCrossRefGoogle Scholar
  27. Groudine, M., Holtzer, H., Scherrer, K., and Therwath, A., 1974, Lineage-dependent transcription of globin genes, Cell, 3: 243–247.PubMedCrossRefGoogle Scholar
  28. Groudine, M., Peretz, M., and Weintraub, H., 1981, Transcriptional regulation of hemoglobin switching in chicken embryos, Mol. Cell. Biol., 1: 281–301.Google Scholar
  29. Hagopian, H. K., Lippke, J. A., and Ingram, V., 1972, Erythropoietic cell cultures from chick embryos, J. Cell Biol., 54: 98–106.PubMedCrossRefGoogle Scholar
  30. Hamlyn, P. H., and Rabbitts, T. H., 1983, Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene, Nature, 304: 135–139.PubMedCrossRefGoogle Scholar
  31. Harper, M. I, Fosten, M., and Monk, M., 1982, Preferential paternal X inactivation in extraembryonic tissues of early mouse embryos, J. Embryol. Exp. Morphol., 67: 127–135.PubMedGoogle Scholar
  32. Hayward, W. S., Baverman, S. B., and Astrin, S. M., 1980, Transcriptional products and DNA structure of endogenous avian proviruses, Cold Spring Harbor Symp. Quant. Biol., 44: 1111–1121.Google Scholar
  33. Hishinuma, F., DeBona, P. J., Astrin, S., and Skalka, A. M., 1981, Nucleotide sequence of the acceptor site and termini of integrated avian endogenous provirus ev-1: Integration creates a 6 bp repeat of host DNA, Cell, 23: 155–164.PubMedCrossRefGoogle Scholar
  34. Iatrou, K., Spira, A. W., and Dixon, G. H., 1978, Protamine messenger RNA: Evidence for early synthesis and accumulation during spermatogenesis in rainbow trout, Dev. Biol., 64: 82–98.Google Scholar
  35. Kelly, K., Cochran, B. H., Stiles, C. D., and Leder, P., 1983, Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor, Cell, 35: 603–610.PubMedCrossRefGoogle Scholar
  36. Larsen, A., and Weintraub, H., 1982, An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin, Cell, 29: 609–622.PubMedCrossRefGoogle Scholar
  37. Leder, P., Battey, J., Lenoir, G., Moulding, C., Murphy, W., Potter, H., Stewart, T., and Taub, R., 1983, Translocations among antibody genes in human cancer, Science, 222: 765–771.PubMedCrossRefGoogle Scholar
  38. Lezzi, M., and Robert, M., 1976, Chromosomes isolated from unfixed salivary glands of Chironomous, in: “Developmental Studies on Giant Chromosomes: Results and Problems in Cell Differentiation,” W. Beerman, ed., Springer-Verlag, New York, vol. 4: 35–57.Google Scholar
  39. Lilley, D. M. J., 1980, The inverted repeat as a recognizable structural feature in supercoiled DNA molecules, Proc. Natl. Acad. Sci. USA, 77: 6468–6472.PubMedCrossRefGoogle Scholar
  40. Lilley, D. M. J., 1981, Hairpin-loop formation by inverted repeats in supercoiled DNA is a local and transmissible property, Nucl. Acids Res., 9: 1271–1289.CrossRefGoogle Scholar
  41. Lillie, F., 1952, “Development of the Chick,” 3rd Edition, Holt, Rinehart and Winston, New York.Google Scholar
  42. Linial, M., and Groudine, M., 1985, Transcription of three c-myc exons is enhanced in chicken bursal lymphoma cell lines, Proc. Natl. Acad. Sci. USA, 82: 53–57.PubMedCrossRefGoogle Scholar
  43. Makino, R., Hayashi, K., and Sugimura, T., 1984, C-myc transcript is induced in rat liver at a very early stage of regeneration or by cycloheximide treatment, Nature, 310: 697–698.PubMedCrossRefGoogle Scholar
  44. McGhee, J., and Ginder, G. D., 1979, Specific DNA methylation sites in the vicinity of chicken ß-globin genes, Nature, 280: 419–420.PubMedCrossRefGoogle Scholar
  45. McGhee, J. D., Wood, W. I., Dolan, M., Engel, J. D., and Felsenfeld, G., 1981, A 200 base pair region at the 5’ end of the chicken adult ß-globin gene is accessible to nuclease digestion, Cell, 27: 45–55.PubMedCrossRefGoogle Scholar
  46. McGrath, J., and Solter, D., 1984, Completion of mouse embryogenesis requires both the maternal and paternal genome, Cell, 37: 179–183.PubMedCrossRefGoogle Scholar
  47. McKnight, S. L., Gavis, E. R., Kingsbury, R., and Axel, R., 1981, Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: Identification of an upstream control region, Cell, 25: 385–398.PubMedCrossRefGoogle Scholar
  48. Nowock, J., Borgmeyer, U., Puschel, A. W., Rupp, R. A. W., and Sippel, A. E., 1985, The TGGCA protein binds to the MMTV-LTR, the adenovirus origin of replication, and the BK virus enhancer, Nucl. Acids Res., 13: 2045–2061.CrossRefGoogle Scholar
  49. Panayotatos, N., and Wells, R. D., 1981, Cruciform structures in supercoiled DNA, Nature, 289: 466–470.PubMedCrossRefGoogle Scholar
  50. Piechaczyk, M., Blanchard, J. M., Marty, L., Dani, C., Panabieres, F., El Sabouty, S., Fort, P., and Jeanteur, P., 1984, Post-transcriptional regulation of glyceraldehyde-3-phosphatedehydrogenase gene expression in rat tissues, Nucl. Acids Res., 12: 6951–6963.CrossRefGoogle Scholar
  51. Prehn, J., Mercola, M., and Calame, K., 1984, Translocation affects normal c-myc promoter usage and activates fifteen cryptic c-myc transcription starts in plasmacytoma M603, Nucl. Acids Res., 12: 8987–9007.CrossRefGoogle Scholar
  52. Razin, A., and Riggs, A. D., 1980, DNA methylation and gene function, Science, 210: 604–610.PubMedCrossRefGoogle Scholar
  53. Riggs, A. D., 1984, “DNA Methylation and Biological Significances,” A. Razin, H. Cedar, and A. Riggs, eds., Springer-Verlag, New York, pp 269–278.CrossRefGoogle Scholar
  54. Samarut, J., Jurdic, P., and Nigon, V., 1979, Production of erythropoietic colony-forming units and erythrocytes during chick embryo development: An attempt at modelization of chick embryo erythropoiesis, J. Embryol. Exp. Morphol., 50: 1–20.PubMedGoogle Scholar
  55. Sanders-Haigh, L., Blanchard-Owens, B., and Ingram, V., 1983, “Hemoglobin Switching”, G. Stamatoyannopoulos and A. Neinhuis, eds., Liss, New York, pp. 39–52.Google Scholar
  56. Sassone-Corsi, P., Wildeman, A., and Chambon, P., 1985, A trans-acting factor is responsible for the simian virus 40 enhancer in vitro, Nature, 313: 458–463.PubMedCrossRefGoogle Scholar
  57. Schubach, W., and Groudine, M., 1984, Alteration of c-myc chromatin structure by avian leukosis virus integration, Nature, 307: 702–708.PubMedCrossRefGoogle Scholar
  58. Shih, C.-K., Linial, M., Goodenow, M. M., and Hayward, W. S., 1984, Nucleotide sequence 5’ of the chicken c-myc coding region: Localization of a noncoding exon that is absent from myc transcripts in most avian leukosis virus-induced lymphomas, Proc. Natl. Acad. Sci. USA, 81: 4697–4701.PubMedCrossRefGoogle Scholar
  59. Stalder, J., Groudine, M, Dodgson, J. B., Engel, J. D., and Weintraub, H., 1980, Hb switching in chicken, Cell, 19: 973–980.PubMedCrossRefGoogle Scholar
  60. Stalder, J., Larsen, A., Engel, J. D., Dolan, M., Groudine, M., and Weintraub, H., 1980, Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNase I, Cell, 20: 451–460.PubMedCrossRefGoogle Scholar
  61. Stanton, L. W., Watt, R., and Marcu, K. B., 1983, Translocation, breakage and truncated transcripts of c-myc oncogene in murine plasmacytomas, Nature, 303: 401–406.PubMedCrossRefGoogle Scholar
  62. Stein, R., Sciaky-Gallili, N., Razin, A., and Cedar, H., 1983, Patterns of methylation of two genes coding for housekeeping functions, Proc. Natl. Acad. Sci. USA, 80: 2422–2426.PubMedCrossRefGoogle Scholar
  63. Surani, M. A., Barton, S. C., and Norris, M. L., 1984, Development of reconstituted mouse eggs suggests imprinting of the genome duringGoogle Scholar
  64. gametogenesis, Nature, 308:548–550.Google Scholar
  65. Takagi, N., Wake, N., and Sasaki, M., 1978, Cytologic evidence for preferential inactivation of the paternally derived X chromosome in XX mouse blastocytes, Cytogenet. Cell Genet., 20: 240–248.CrossRefGoogle Scholar
  66. Tykocinski, M. L., and Max, E. E., 1984, CG dinucleotide clusters in MHC genes and in 5’ demethylated genes, Nucl. Acids Res., 12: 4385–4396.CrossRefGoogle Scholar
  67. Waalwyck, C., and Flavell, R., 1978, DNA methylation of CCGG sequence in the large intron of the rabbit B-globin gene: Tissue-specific variations, Nucl. Acids Res., 5: 4631–4641.CrossRefGoogle Scholar
  68. Weintraub, H., 1983, A dominant role for DNA secondary structure in forming hypersensitive structures in chromatin, Cell, 32: 1191–1203.PubMedCrossRefGoogle Scholar
  69. Weintraub, H., and Groudine, M., 1976, Chromosomal subunits in active genes have an altered conformation, Science, 193: 848–856.PubMedCrossRefGoogle Scholar
  70. Weintraub, H., Campbell, G., and Holtzer, H., 1971, Primitive erythropoiesis in early chick embryogenesis I. Cell cycle kinetics and the control of cell division, J. Cell Biol., 50: 652–668.PubMedCrossRefGoogle Scholar
  71. Weintraub, H., Larsen, A., and Groudine, M., 1981, a-Globin gene switching during the development of chicken embryos: Expression and chromatin structure, Cell, 24:333–344.Google Scholar
  72. West, J. D., Frels, W. I., Chapman, V. M., and Papaioannou, V. E., 1977, Preferential expression of the maternally derived X chromosome in the mouse yolk sac, Cell, 12: 873–882.PubMedCrossRefGoogle Scholar
  73. Yanisch-Perron, C., Viera, J., and Messing, J., 1985, Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors, Gene, 33: 103–119.PubMedCrossRefGoogle Scholar
  74. Zaret, K. S., and Yamamoto, K. R., 1984, Reversible and persistent changes in chromatin structure accompany activation of a glucocorticoiddependent enhancer element, Cell, 38: 29–38.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Mark Groudine
    • 1
    • 2
  • Maxine Linial
    • 1
    • 2
  1. 1.Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of Radiation OncologyUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations