Characterization of Glycoproteins: Carbohydrate Structures of Glycoprotein Hormones

  • Om P. Bahl
  • Premanand V. Wagh
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 205)


Gylcoproteins are a complex group of macromolecules that are widely distributed in nature. They are present virtually in all forms of life and are involved in important biological functions (Wagh and Bahl, 1981; Sharon and Liz, 1982; Kobata, 1984). The importance of the role that the carbohydrates play in the functions of glycoproteins has been fairly well recognized (Ashwell and Harford, 1982; Kalyan et al., 1982; Kalyan and Bahl, 1983). In recent years, considerable progress has been made toward our understanding of the structure, function, and biosynthesis of the carbohydrates (Kornfeld and Kornfeld, 1985). This has been due largely to the refinement in oligosaccharide separation and structural techniques. A vast amount of structural information gathered as a result has revealed that microheterogeneity is of general occurrence in glycoproteins. The function of this microheterogeneity is ambiguous at present. Moreover, it is difficult to reconcile the phenomenon of microheterogeneity with the fact that there is an intimate and precise relationship between structure and function in biological macromolecules. Nevertheless, the existence of microheterogeneity has complicated the structural determination of the carbohydrate prosthetic groups. In the seventies, microheterogeneity was merely considered as an artifact and was ignored during the structural determination of heterosaccharides. Consequently, the structures reported then were average structures and should be reexamined (Kobata, 1984). In this report, the problem of micro-heterogeneity the general strategy for heterosaccharide structural characterization are considered with respect to three glycoprotein hormones: human choriogonadotropin (hCG), ovine luteinizing hormone (oLH), and equine choriogonadotropin (eCG).


Sialic Acid Human Chorionic Gonadotropin Sugar Residue Periodate Oxidation Glycoprotein Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anumula, K. R., and Bahl, O. P., 1985a, Equine choriogonadotropin — Heterogeneity of asparagine-linked carbohydrates in the α and ß subunits, J. Biol. Chem., submitted.Google Scholar
  2. Anumula, K. R., and Bahl, O. P., 1985b, Equine choriogonadotropin - Unusual multiantennary Ser/Thr-linked carbohydrates in the ß subunit, J. Biol. Chem., submitted.Google Scholar
  3. Anumula, K. R., and Bahl, O. P., 1983, Biosynthesis of ovine lutropin in pituitary slices: Incorporation of [35 S]-sulfate, Arch. Biochem. Biophys., 220: 645–651.PubMedCrossRefGoogle Scholar
  4. Ashwell, G., and Harford, J., 1982, Carbohydrate-specific receptors of the liver, Ann. Rev. Biochem., 51: 531–554.PubMedCrossRefGoogle Scholar
  5. Bayard, B., and Kerckaert, J.-P., 1980, Evidence for uniformity of the carbohydrate chains in individual glycoprotein molecular variants, Biochem. Biophys. Res. Commun., 95: 777–784.PubMedCrossRefGoogle Scholar
  6. Behrens, W. H., and Tabora, E., 1978, Dolichol intermediates in the glycosylation of proteins, in: “Methods in Enzymology,” V. Ginsburg, ed., Academic Press, New York, vol. 50C, pp. 402–435.Google Scholar
  7. Bedi, G., French, W. C., and Bahl, O. P., 1982, Structure of carbohydrate units of ovine luteinizing hormone, J. Biol. Chem., 257: 4345–4355.PubMedGoogle Scholar
  8. Bellisario, R., Carlsen, R. B., and Bahl, O. P., 1973, Human chorionic gonadotropin: Linear amino acid sequence of the ο subunit, J. Biol. Chem., 248: 6796–6809.PubMedGoogle Scholar
  9. Carlsen, R. B., Bahl, O. P., and Swaminathan, N., 1973, Human chorionic gonadotropin: Linear amino acid sequence of the ß subunit, J. Biol. Chem., 248: 6810–6827.PubMedGoogle Scholar
  10. Carlstedt, I., Sheehan, J. K., Corfield, A. P., and Gallagher, J. T., 1985, Mucous glycoproteins: A gel of a problem, Essays in Biochemistry, 20: 40–76.PubMedGoogle Scholar
  11. Christakos, S., and Bahl, O. P., 1979, Pregnant mare serum gonadotropin: Purification and physicochemical, biological and immunological characterization, J. Biol. Chem., 254: 4253–4261.PubMedGoogle Scholar
  12. Cunningham, L., 1975, Microheterogeneity and functions of glycoproteins, in: “Glycoproteins of Blood Cells and Plasma,” G. A. Jamieson, and T. J. Greenwalt, eds., J. B. Lippincott Company, Philadelphia, pp. 16–34.Google Scholar
  13. Elder, J. H., and Alexander, S., 1982, Endo-ß-acetylglucosaminidase F: Endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins, Proc. Natl. Acad. Sci. USA, 79: 4540–4544.PubMedCrossRefGoogle Scholar
  14. French, W. C., Henner, J. A., and Bahl, O. P., 1984, Biosynthesis of glycoproteins in human placenta: Differential labeling of mannose and heterogeneity of oligosaccharide lipid intermediates, Arch. Biochem. Biophys., 230: 560–579.PubMedCrossRefGoogle Scholar
  15. Fukuda, M. N., 1985, Isolation and characterization of a new Endo-ß-galactosidase fromDiplococcus pneumoniae Biochemistry, 24: 2154–2163.Google Scholar
  16. Goldstein, I. J., Hay, G. W., Lewis, B. A., and Smith, F., 1965, Controlled degradation of polysaccharides by periodate oxidation, reduction and hydrolysis, Methods Carbohydr. Chem., 5: 361–371.Google Scholar
  17. Green, E. D., Gruenebaum, J., Bielinska, M., Baenziger, J. H., and Boime, I., 1984, Sulfation of lutropin oligosaccharides with a cell-free system, Proc. Natl. Acad. Sci., 81: 5320–5324.PubMedCrossRefGoogle Scholar
  18. Green, E. D., Baenziger, J. U., and Boime, I., 1985a, Cell-free sulfation of human and bovine pituitary hormones. Comparison of the sulfated oligosaccharides of lutropin, follitropin and thyrotropin, J. Biol. Chem., 260: 15631–15638.PubMedGoogle Scholar
  19. Green, E. D., Van Halbeck, H., Boime, I., and Baenziger, J. U., 1985b, Structural elucidation of the disulfated oligosaccharide from bovine lutropin, J. Biol. Chem., 260: 15623–15630.PubMedGoogle Scholar
  20. Hakamori, S., 1964, Rapid permethylation of glycolipids and polysaccharides catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide, J. Biochem., ( Tokyo ), 55: 205–208.Google Scholar
  21. Hase, S., and Matsushima, Y., 1969, Aminosugar analysis by gas-liquid chromatography, J. Biochem., ( Tokyo ), 66: 57–62.PubMedGoogle Scholar
  22. Hatton, M. W. C., Marz, L., and Regoeczi, E., 1983, On the significance of heterogeneity of plasma glycoproteins possessing N-glycans of the complex type: A perspective, Trends Biochem. Sci., 8: 287–291.CrossRefGoogle Scholar
  23. Holmes, E. W., and O’Brien, J. S., 1979, Separation of glycoproteinderived oligosaccharides by thin-layer chromatography, Analyt. Biochem., 93: 167–170.PubMedCrossRefGoogle Scholar
  24. Hortin, G., Natowicz, M., Pierce, J., Baenziger, J. U., Parsons, T., and Boime, I., 1981, Metabolic labeling of lutropin with [35 S]sulfate, Proc. Natl. Acad. Sci. USA, 78: 7468–7472.PubMedCrossRefGoogle Scholar
  25. Horton, D., Phillips, K. D., and Defaye, J., 1972, The nitrous acid deamination of 2-amino-2-deoxy-D-mannose hydrochloride to D-glucose, Carbohydr. Res., 21: 417–419.CrossRefGoogle Scholar
  26. Hounsell, E. F., Wright, D. J., Donald, A. S. R., and Feeney, J., 1984, A computerized approach to the analysis of oligosaccharide structure by high-resolution proton n.m.r., Biochem. J., 223: 129–143.PubMedGoogle Scholar
  27. Jansson, P., Kenne, Liedgren, H., Lindberg, B., and Lonngren, J., 1976, A practical guide to the methylation analysis of carbohydrates, Chem. Commun. Univ. Stockholm, 8: 1–75.Google Scholar
  28. Jarnefelt, J., Rush, J., Li, Y.-T., and Laine, R., 1978, Erythroglycan, a high molecular weight glycopeptide with the repeating structure (galactosyl-(1–4)-2-deoxy-2-acetamido glucosyl (1–3) comprising more than one-third of the protein-bound carbohydrate of human erythrocyte stroma, J. Biol. Chem., 253: 8006–8009.PubMedGoogle Scholar
  29. Kalyan, N. K., Lippes, H. A., and Bahl, O. P., 1982, Role of carbohydrate in human choriogonadotropin: Effect of periodate oxidation and reduction on its in vitro and in vivo biological properties, J. Biol. Chem., 257: 12624–12631.PubMedGoogle Scholar
  30. Kalyan, N. K., and Bahl, O. P., 1983, Role of carbohydrate in human chorionic gonadotropin: Effect of deglycosylation on the subunit interaction and on its in vitro and in vivo biological properties, J. Biol. Chem., 258: 67–74.PubMedGoogle Scholar
  31. Kessler, M. J., Reddy, M. S., Shah, R. H., and Bahl, O. P., 1979a, Structures of N-glycosidic carbohydrate units of human chorionic gonadotropin, J. Biol. Chem., 254: 7901–7908.PubMedGoogle Scholar
  32. Kessler, M. J., Mise, T., Ghai, R. D., and Bahl, O P., 1979b, Structure and location of the 0-glycosidic carbohydrate units of human chorionir gnnadotropin, J. Biol. Chem., 254: 7909–7914.PubMedGoogle Scholar
  33. Kobata, A., 1984, The carbohydrates of glycoproteins, in: “Biology of Carbohydrates,” V. Ginsburg, and P. W. Robbins, eds., John Wiley and Sons, New York, vol. 2, pp. 87–161.Google Scholar
  34. Kocourek, J., and Ballou, C. E., 1969, Method for fingerprinting yeast cell wall mannans, J. Bacteriol., 100: 1175–1181.PubMedGoogle Scholar
  35. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem., 54: 631–664.PubMedCrossRefGoogle Scholar
  36. Krusius, T., Finna, J., and Rauvala, H., 1978, The poly(glycosyl) chains of glycoproteins. Characterization of a novel type of glycoprotein saccharides from human erythrocyte membrane, Eur. J. Biochem., 92: 289–300.PubMedCrossRefGoogle Scholar
  37. Lindberg, B., 1972, Methylation analyses of polysaccharides, in: “Methods in Enzymology,” V. Ginsburg, ed., Academic Press, New York, Vol. 28B, pp. 178–195.Google Scholar
  38. Liu, W.-K., Nahm, H. S., Sweeney, C. M., Lamkin, W. M., Baker, H. N., and Ward, D. N., 1972a, The primary structure of ovine luteinizing hormone. I. The amino acid sequence of the reduced and S-aminothylated S-subunit ( LHα ), J. Biol. Chem., 247: 4351–4364.PubMedGoogle Scholar
  39. Liu, W.-K., Nahm, H. S., Sweeney, C. M., Holcomb, G. N., and Ward, D. N., 1972b, The primary structure of ovine luteinizing hormone. II. The amino acid sequence of the reduced, S-carboxymethylated A-subunit (LHß), J. Biol. Chem., 247: 4365–4381.PubMedGoogle Scholar
  40. Lloyd, K. O., and Kabat, E. A., 1969, Immunological studies on blood groups. XI. Scission of oligosaccharides by sodium hydroxide in the presence of sodium borohydride: A model for the degradation of blood-group substances, Carbohydr. Res., 9: 41–48.CrossRefGoogle Scholar
  41. Marz, L., Hatton, M. W. C., Berry, L. R., and Regoeczi, E., 1982, The structural heterogeneity of the carbohydrate moiety of desialylated human transferrin, Can. J. Biochem., 60: 624–630.PubMedGoogle Scholar
  42. Mellis, S. J., and Baenziger, J. U., 1981, Separation of neutral oligosaccharides by high-performance liquid chromatography, Analy. Biochem., 114: 276–280.CrossRefGoogle Scholar
  43. Mise, T., and Bahl, O. P., 1980, Assignment of disulfide bonds in the α-subunit of human chorionic gonadotropin, J. Biol. Chem., 255: 8516–8522.PubMedGoogle Scholar
  44. Mise, T., and Bahl, O. P., 1981, Assignment of disulfide bonds in the ß-subunit of human chorionic gonadotropin, J. Biol. Chem., 256: 6587–6592.PubMedGoogle Scholar
  45. Mizuochi, T., Nishimura, R., Derappe, C., Taniguchi, T., Hamamoto, T., Mochizuki, M., and Kobata, A., 1983, Structures of the asparagine-linked sugar chains of human chorionic gonadotropin produced in choriocarcinoma: Appearance of tetra-antennary sugar chains and unique biantennary sugar chains, J. Biol. Chem., 258: 14126–14129.PubMedGoogle Scholar
  46. Montgomery, R., 1972, Heterogeneity of the carbohydrate groups of glycoproteins, in: “Glycoproteins: Their Composition, Structure and Function,” Part A., A. Gottschalk, ed., Elsevier Publishing Company, New York, pp. 518–528.Google Scholar
  47. Morgan, F. J., Birken, S., and Canfield, R. E., 1975, The amino acid sequence of human chorionic gonadotropin: The α subunit and ß subunit, J. Biol. Chem., 250: 5247–5258.PubMedGoogle Scholar
  48. Osawa, T., Yamamoto, K., Katagiri, Y., Tsuji, T., and Tarutani, O., 1985, in: “Glycoconjugates — Proceedings of the VIIIth International Symposium,” E. A. Davidson, J. C. Williams, and N. M. DiFerrante, eds., Praeger Scientific, New York, vol. 2., p. 418.Google Scholar
  49. Parsons, T. C., and Pierce, J. G., 1980, Oligosaccharide moieties of glycoprotein hormones: Bovine lutropin resists enzymatic deglycosylation because of terminal 0-sulfated N-acetylhexosamines, Proc. Natl. Acad. Sci., 77: 7089–7093.PubMedCrossRefGoogle Scholar
  50. Regoeczi, E., Wong, K.-L., Ali, M., and Hatton, M. W. C., 1977, The molecular components of human transferrin type C, Intl. J. Peptide Protein Res., 10: 17–26.CrossRefGoogle Scholar
  51. Sairam, M. R., Papkoff, H., and Li, C.-H., 1972a, The primary structure of ovine interstitial cell-stimulating hormone. I. The α-subunit, Arch. Biochem. Biophys., 153: 554–571.PubMedCrossRefGoogle Scholar
  52. Sairam, M. R., Samy, T. S. A., Papkoff, H., and Li, C.-H., 1972b, The primary structure of ovine interstitial cell-stimulating hormone. I. The β-subunit, Arch. Biochem. Biophys., 153: 572–586.PubMedCrossRefGoogle Scholar
  53. Saxena, B. B., and Rathnam, P., 1976, Amino acid sequence of the ß-subunit of follicle-stimulating hormone from human pituitary glands, J. Biol. Chem., 251: 993–1005.PubMedGoogle Scholar
  54. Sharon, N., and Liz, H., 1982, Glycoproteins, in: “The Proteins,” H. Neurath, and R. L. Hill, eds., Academic Press, New York, vol. V, pp. 1–144.Google Scholar
  55. Shome, B., and Parlow, A. F., 1974, Human follicle stimulating hormone (hFSH): First proposal for the amino acid sequence of the α-subunit (hFSHα) and first demonstration of its identity with the α-subunit of human luteinizing hormone (hLHα), J. Clin. Endocrinol. Metab., 39: 199–205.PubMedCrossRefGoogle Scholar
  56. Stellner, K., Saito, H., and Hakamori, S., 1972, Determination of amino sugar linkage in glycolipids by methylation: Amino sugar linkage of cevamide pentasaccharides of rabbit erythmocytes and of Forrsman antigen, Arch. Biochem. Biophys., 155: 464–472.CrossRefGoogle Scholar
  57. Taga, E. M., Waheed, A., and Van Etten, R. L., 1984, Structural and chemical characterization of a homogeneous peptide N-glycosidase from almond, Biochemistry, 23: 815–822.PubMedCrossRefGoogle Scholar
  58. Takasaki, S., Yamashita, K., Suzuki, K., Iwanaga, S., and Kobata, A., 1979, The sugar chains of cold-insoluble globulin: A protein related to fibronectin, J. Biol. Chem., 254: 8548–8553.PubMedGoogle Scholar
  59. Takasaki, T Muzuochi, T., and Kobata, A., 1982, Hydrazinolysis of asparagine-linked sugar chains to produce free oligosaccharides, in: “Methods in Enzymology,” V. Ginsburg, ed., Academic Press, New York, vol. 83D, pp. 263–268.Google Scholar
  60. Tarentino, A. L., and Maley, F., 1976, Purification and properties of an endo-ß-N-acetylglucosaminidase from hen oviduct, J. Biol. Chem., 252: 6337–6543.Google Scholar
  61. Tarentino, A. L., Gomez, C. M., and Plummer, T. H., Jr., 1985, Deglycosylation of asparagine-linked glycans by peptide: N-glycosidase F., Biochemistry, 24: 4665–4671.PubMedCrossRefGoogle Scholar
  62. Trimble, R. E., Tarentino, A. L., Aumick, G. E., and Maley F., 1982, Endo-ß-N-acetylglucosaminidase L from Streptomyces plicatus, in: “Methods in Enzymology,” V. Ginsburg, ed., Academic Press, New York, vol. 83, pp. 603–610.Google Scholar
  63. Turco, S. J., 1981, Rapid separation of high mannose-type oligosaccharides by high-pressure liquid chromatography, Analyt. Biochem., 118: 278–283.PubMedCrossRefGoogle Scholar
  64. Umemoto, J., Bhavanandan, V. P., and Davidson, E. A., 1977, Purification and properties of an endo-α-N-acetyl-D-galactosaminidase from Diploccus pneumoniae, J. Biol. Chem., 252: 8609–8614.PubMedGoogle Scholar
  65. Wagh, P. V., and Bahl, O. P., 1981, Sugar residues on proteins, Crit. Rev. Biochem., 10: 307–377.CrossRefGoogle Scholar
  66. Wong, K.-L., Charlwood, P. A., Hatton, M. W. C., and Regoeczi, E., 1974, Studies of the metabolism of asialotransferrins: Evidence that transferrin does not undergo desialylation in vivo, Clin. Sic. Mol. Med., 46: 763–774.Google Scholar
  67. Yamashita, K., Mizuocho, T., and Kobata, A., 1982, Analysis of oligosac-charides by gel filtration, in: “Methods in Enzymology,” V. Ginsburg, Academic Press, New York, vol. 83D, pp. 105–126.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Om P. Bahl
    • 1
  • Premanand V. Wagh
    • 1
  1. 1.Department of Biological SciencesState University of New York at BuffaloBuffaloUSA

Personalised recommendations