Effects of Different Insulin Administration Modalities on Vitamin D Metabolism of Insulin-Dependent Diabetic Patients

  • Claude Colette
  • Louis Monnier
  • Jacques Arnal
  • Jean-Louis Selam
  • Jacques Mirouze
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)


Several studies have established that diabetes mellitus is usually associated with abnormalities in bone mineral metabolism1,2,3, calcium homeostasis4,5,6, and vitamin D metabolism7,8,9. A reduced production of 1,25 dihydroxyvitamin D3, the biologically active metabolite of vitamin D3 is the most common finding in experimentally induced diabetic rats7,9,10, or in young insulin-dependent (type 1) diabetic patients11. However the relationships between the diabetic state and the 1,25 dihydroxyvitamin D metabolism remain controversia112. The results of in vitro studies seem to indicate that insulin can modulate the production of the 1,25 dihydroxyvitamin D8. It has been recently demonstrated that diabetic rats suffering from minimal reduction in insulin secretion (type 2) had no abnormalities in vitamin D metabolism13. However short term, i.e. less than two weeks, improvements of diabetic control under continuous subcutaneous insulin infusion (CSii) in insulin-dependent diabetic patients have failed to either normalize14 or modify5 circulating 1,25 dihydroxyvitamin D levels. Furthermore in 65 per cent hepatectomized dogs, it has been observed that the hepatic production of 25 hydroxyvitamin D was only impaired when the hormonal supply arising from the pancreas was suppressed by a spleno pancreatico caval shunt15. For all these reasons we were led to study the effects of both prolonged tight diabetic control and insulin delivery through portal routes on vitamin D metabolism in insulin-dependent diabetic patients. These two objectives were reached by using the continuous intra peritoneal infusion technique16 and the results obtained were compared to those observed under systemic insulin deliveries using either CSii or conventional treatments with single or multiple daily insulin injections.


Insulin Infusion Continuous Subcutaneous Insulin Infusion Insulin Delivery Subcutaneous Route Systemic Insulin Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Levin, V. C. Boisseau and L. V. Avioli, Effects of diabetes mellitus on bone mass in juvenile and adult onset diabetes, N. Engl. J. Med. 294: 241 (1976).CrossRefGoogle Scholar
  2. 2.
    P. Mc. Nair, S. Madsbad, C. Christiansen, M. S. Christensen, O. K. Faber, C. Binder and I. TransbØl, Bone loss in diabetes: Effects of metabolic state, Diabetologia. 17: 283 (1979).Google Scholar
  3. 3.
    A. L. Rosenbloom, D. C. Lezotte, F. T. Weber, J. Gudat, D. R. Heller, M. L. Weber, S. Klein and B. B. Kennedy, Diminu-tion of bone mass in childhood diabetes, Diabetes. 26: 1052 (1977).CrossRefGoogle Scholar
  4. 4.
    L. Monnier, C. Colette, L. Aguirre, C. Sany and J. Mirouze, Intestinal and renal handling of calcium in human diabetes mellitus: influence of acute oral glucose loading and diabetic control, Eur. J. Clin. Invest. 8: 225 (1978).CrossRefGoogle Scholar
  5. 5.
    J. M. Gertner, W. V. Tamborlane, R. L. Horst, R. S. Sheswin, P. Felig and M. Genel, Mineral metabolism in diabetes mellitus: changes accompanying treatment with a portable subcutaneous insulin infusion system, J. Clin. Endocrinol. Metab. 50: 862 (1980).CrossRefGoogle Scholar
  6. 6.
    P. Mc Nair, N. Fogh-Andersen, S. Madsbad and M. S. Christensen, Decreased serum concentration of ionized calcium in insulin dependent human diabetes mellitus, Eur. J. Clin. Invest. 13: 267 (1983).CrossRefGoogle Scholar
  7. 7.
    L. E. Schneider, H.P. Schedl, T. Mc Cain and M. R. Haussier, Experimental diabetes reduces circulating 1,25 dihydroxyvitamin D in the rat, Science 196: 1452 (1977).CrossRefGoogle Scholar
  8. 8.
    N. Wongsurawat, H. J. Armbrecht, T. V. Zenser, B. B. Davis, M. L. Thomas and L. R. Forte, 1,25-ihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 production by isolated renal slices is modulated by diabetes and insulin in the rat. Diabetes. 32: 302 (1983).Google Scholar
  9. 9.
    S. Hough, A. Fausto, O. K. Dong Jo, S. Young and L. V. violi, Vitamin D metabolism in the chronic streptozotocin-induced diabetic rat, Clin. Res. 29:540 A (1981).Google Scholar
  10. 10.
    E. M. Spencer, M. Khalil and 0. Tobiassen, The effect of diabetes on the renal activity of 25 OH D3–1(hydroxylase in rats, Diabetes. 28:367 A (1979).Google Scholar
  11. 11.
    T. E. Frazer, N. H. White, S. Hough, J. V. Santiago, B. R. Mc Gee, G. Bryce, J. Mallon and L. V. Avioli, Alterations in circulating vitamin D metabolites in the young insulin-dependent diabetic, J. Clin. Endocrinol. Metab. 53: 1154 (1981).CrossRefGoogle Scholar
  12. 12.
    H. Heath III, P. W. Lambert, F. J. Service and S. B. Arnaud, Calcium homeostasis in diabetes mellitus, J. Clin. Endocrinol. Metab. 49: 462 (1979).CrossRefGoogle Scholar
  13. 13.
    J. Levy, S. L. Teitelbaum, J. R. Gavin III, A. Fausto, H. Kurose and L. V. Avioli, Bone calcification and calcium homeostasis in rats with non-insulin dependent diabetes induced by streptozotocin, Diabetes, 34: 365 (1985).CrossRefGoogle Scholar
  14. 14.
    J. Gertner, R. Horst and W. Tamborlane, Mineral metabolism and vitamin D status in juvenile diabetics (JOD): changes following normalization of plasma glucose with a portable infusion pump, Diabetes. 28:354 A (1979).Google Scholar
  15. 15.
    C. Colette, B. Saint Aubert, D. Piccolboni, P. C. Andriguetto, F. Quijano, C. Astre, H. Joyeux and L. Monnier, Production of labelled 25 hydroxyvitamin D from 14C vitamin D as a marker of liver function after 65 per cent hepatectomy in dogs, Nutr. Res. 2: 31 (1982).Google Scholar
  16. 16.
    J. L. Selam, A. Slingeneyer, B. Hedon, P. Mares, J. J. Beraud and J. Mirouze, Long-term ambulatory peritoneal insulin infusion of brittle diabetes with portable pumps: comparison with intravenous and subcutaneous routes, Diabetes Care. 6: 105 (1983).CrossRefGoogle Scholar
  17. 17.
    J. C. Pickup, H. Keen, J. A. Parsons and K. G. M. M. Alberti, Continuous subcutaneous insulin infusion: an approach to achieving normoglycemia, Br.Med. J. 1: 204 (1978).CrossRefGoogle Scholar
  18. 18.
    J. L. Selam, P. Giraud, J. Mirouze, S. Saeidi, B. Hedon, A. Slingeneyer, H. Lapinski and C. Humeau, Continuous peritoneal insulin infusion with portable pumps: factors affecting the operating life of the chronic catheter, Diabetes Care. 8: 34 (1985).CrossRefGoogle Scholar
  19. 19.
    M. A. Preece, J. L. H. O’Riordan, D. E. M. Lawson and E. Kodiceck, A competitive protein-binding assay for 25 hydroxycholecalciferol and 25 hydroxyergocalciferol in serum, Clin. Chim. Acta. 54: 235 (1974).CrossRefGoogle Scholar
  20. 20.
    J. A. Eisman, A. J. Hamstra, B. E. Kream, H. F. De Luca, A sensitive, precise and convenient method for determination of 1,25 dihydroxyvitamin D in human plasma. Arch. Biochem. Biophys. 176: 235 (1976).CrossRefGoogle Scholar
  21. 21.
    R. Nosadini, G. A. Noy, M. Natrass, K. G. M. M. Alberti, D. G. Johnston, P. D. Home and H. Orskov, The metabolic and hormonal response to acute normoglycemia in type 1 (insulin-dependent) diabetes: Studies with a glucose controlled insulin infusion system (artificial endocrine pancreas).Diabetologia. 23: 220 (1982).Google Scholar
  22. 22.
    D. S. Schade, R. P. Eaton, T. Davis, F. Akiya, E. Phinney, R. Kubica, E. A. Vaughn and P. W. Day, The kinetics of peritoneal insulin absorption, Metabolism. 30: 149 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Claude Colette
    • 1
  • Louis Monnier
    • 1
  • Jacques Arnal
    • 1
  • Jean-Louis Selam
    • 1
  • Jacques Mirouze
    • 1
  1. 1.Department of MetabolismLapeyronie HospitalMontpellierFrance

Personalised recommendations