Skip to main content

Mechanisms of NAD Action in Regulation of Renal Brush Border Membrane Transport of Phosphate

  • Chapter
Phosphate and Mineral Homeostasis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 208))

Abstract

Many different hormonal and non-hormonal stimuli change the rate of phosphate (Pi) transport across the renal brush border membrane (BBM) (1,2, 3) which probably reflects the central role of proximal tubular reabsorption in renal handling of Pi. Based on considerations of (a) the time required for the effects of these stimuli to induce a response, and (b) whether the response is dependent upon intact de novo protein synthesis, it appears that the various stimuli may act intracellularly through at least two general mechanisms (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-P. Bonjour and J. Caverzasio, Phosphate transport in the kidney, Rev. Physiol. Biochem. Pharmacol. 100: 161 (1984).

    Google Scholar 

  2. S. A. Kempson and T. P. Dousa, Current concepts of regulation of phosphate transport in renal proximal tubules, Biochem. Pharmacol. in press.

    Google Scholar 

  3. T. P. Dousa and S. A. Kempson, Regulation of renal brush border membrane transport of phosphate, Min. Electrolyte Metab. 7: 113 (1982).

    Google Scholar 

  4. A. N. K. Yusufi, N. Murayama, M. J. Keller, and T. P. Dousa, Modulatory effect of thyroid hormones on uptake of phosphate and other solutes across luminal brush border membrane of kidney cortex. Endocrinology 116: 2438 (1985).

    Article  Google Scholar 

  5. S. T. Turner, G. M. Kiebzak, and T. P. Dousa, Mechanism of glucocorticoid effect on renal transport of Pi, Am. J. Physiol. 243: C227 (1982).

    Google Scholar 

  6. S. V. Shah, S. A. Kempson, T. E. Northrup, and T. P. Dousa, Renal adaptation to the low phosphate diet in rats; blockade by actinomycin D, J. Clin. Invest. 64: 955 (1979).

    Article  Google Scholar 

  7. A. N. K. Yusuf i, R. Holets, and T. P. Dousa, Mechanism by which T3 stimulates brush border membrane transport of phosphate, Abstracts 9th Int. Congress Nephrol. (Los Angeles, California) 378A (1984).

    Google Scholar 

  8. B. Sacktor and L. Noronha-Blob, Glucocorticoids act directly on renal cells to inhibit phosphate transport, Fed. Proc. 43: 632 (1984).

    Google Scholar 

  9. H. Evers, H. Murer, and R. Kinne, Effect of parathyrin on the transport properties of isolated renal brush border vesicles, Biochem. J. 172: 49 (1978).

    Google Scholar 

  10. M. R. Hammerman, I. E. Karl, and K. A. Hruska, Regulation of canine renal vesicle Pi transport by growth hormone and parathyroid hormone, Biochim. Biophys. Acta 603: 322 (1980).

    Article  Google Scholar 

  11. A. Yusuf i, T. Berndt, N. Murayama, F. Knox, and T. Dousa, The response of superficial and deep cortex to phosphaturic hormones in rats fed normal or low phosphate diets, Clin. Res. 32: 461A (1984).

    Google Scholar 

  12. M. R. Hammerman, S. Rogers, V. A. Hansen, and J. R. Gavin, Insulin stimulates Pi transport in brush border vesicles from proximal tubular segments, Am. J. Physiol. 247: E616 (1984).

    Google Scholar 

  13. B. S. Levine, K. Ho, A. Hodsman, K. Kurokawa, and J. W. Coburn, Early renal brush border membrane adaptation to dietary phosphorus, Min. Electrolyte Metab. 10: 222 (1984).

    Google Scholar 

  14. J. Caverzasio, C. D. A. Brown, J. Biber, J.-P. Bonjour, and H. Murer, Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells, Am. J. Physiol. 248: F122 (1985).

    Google Scholar 

  15. H. C. Rasmussen, C. Arnaud, and C. Hawker, Actinomycin D and the response to parathyroid hormone, Science 144: 1019 (1964).

    Article  Google Scholar 

  16. B. S. Levine, K. Kurokawa, and J. W. Coburn, Renal adaptation to diet phosphorus; early events, Abstracts 9th Int. Congress Nephrol. (Los Angeles, California) 55A (1984).

    Google Scholar 

  17. S. A. Kempson, G. Colon-Otero, S.-Y. L. Ou, S. T. Turner, and T. P. Dousa, Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat, J. Clin. Invest. 67: 1347 (1981).

    Article  Google Scholar 

  18. R. J. Lefkowitz and M. G. Caron, Adrenergic receptors; molecular mechanisms of clinically relevant regulation, Clin. Res. 33: 395 (1985).

    Google Scholar 

  19. T. P. Dousa, A. N. K. Yusuf i, E. Kusano, and J. L. Braun-Werness, Effect of nicotinamide administration on NAD content in proximal tubules, Kidney Int. 23: 222 (1983).

    Google Scholar 

  20. S. A. Kempson, S. T. Turner, A. N. K. Yusuf i, and T. P. Dousa, Actions of NAD on renal brush border transport of phosphate in vivo and in vivo, Am. J. Physiol. 249:in press (1985).

    Google Scholar 

  21. D. H. Williamson and J. T. Brosnan, Concentrations of metabolites in animal tissues, in: Methods of Enzymatic Analysis, H. U. Bergmeyer, ed., Academic Press, New York, vol. 4:2266 (1974).

    Google Scholar 

  22. J. L. Braun-Werness, B. A. Jackson, P. G. Werness, and T. P. Dousa, Binding of nicotinamide adenine dinucleotide by the renal brush border membrane from rat kidney cortex, Biochim. Biophys. Acta 732: 553 (1983).

    Article  Google Scholar 

  23. K. Ueda and O. Hayaishi, ADP-Ribosylation, Ann. Rev. Biochem. 54: 73 (1985).

    Article  Google Scholar 

  24. D. A. Yost and J. Moss, Amino acid-specific ADP-ribosylation, J. Biol. Chem. 258: 4926 (1983).

    Google Scholar 

  25. S. A. Kempson and N. P. Curthoys, NAD-dependent ADP-ribosyltransferase in renal brush border membranes, Am. J. Physiol. 245: C449 (1983).

    Google Scholar 

  26. S. Filetti and B. Rapoport, Hormonal stimulation of eucaryotic cell ADPribosylation. Effect of thyrotropin on thyroid cells, J. Clin. Invest. 68: 461 (1981).

    Article  Google Scholar 

  27. M. J. S. DeWolf, P. Vitti, F. S. Ambesi-Impiombato, and L. D. Kohn, Thyroid membrane ADP ribosyltransferase activity, J. Biol. Chem. 256: 12287 (1981).

    Google Scholar 

  28. D. M. Gill and R. Meren, ADP-ribosylation of membrane proteins catalysed by cholera toxin; basis of the activation of adenylate cyclase, Proc. Nat. Acad. Sci. USA 75: 3050 (1978).

    Article  Google Scholar 

  29. H. R. Kaslow, V. E. Groppi, M. E. Abood, and H. E. Bourne, Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins, J. Cell Biol. 91: 410 (1981).

    Article  Google Scholar 

  30. D. J. Hawkins and E.T. Browning, Tubulin adenosine diphosphate ribosylation is catalysed by cholera toxin, Biochemistry 21: 4474 (1982).

    Article  Google Scholar 

  31. M. R. Hammerman, D. E. Cohn, J. Tamayo, and K. J. Martin, PTH increases ADP-ribosylation of canine renal brush border membrane proteins, Kidney Int. 23: 100 (1983).

    Google Scholar 

  32. S. A. Kempson, NAD-Glycohydrolase in renal brush border membranes, Am. J. Physiol. 249: F366 (1985).

    Google Scholar 

  33. H. F. Bunn, R. Shapiro, M. McManus, L. Garrick, M. J. McDonald, P. M. Gallop, and K. H. Gabbay, Structural heterogeneity of human hemoglobin A due to non-enzymatic glycosylation, J. Biol. Chem. 254: 3892 (1979).

    Google Scholar 

  34. O. H. Wieland, Protein modification by non-enzymatic glucosylation; possible role in the development of diabetic complications, Mol. Cell. Endocrinol. 29: 125 (1983).

    Article  Google Scholar 

  35. E. Kun, A. C. Y. Chang, M. L. Sharma, A. M. Ferro, and D. Nitecki, Covalent modification of proteins by metabolites of NAD+, Proc. Nat. Acad. Sci. USA 73: 3131 (1976).

    Article  Google Scholar 

  36. H. Hilz, R. Koch, W. Fanick, K. Klapproth, and P. Adamietz, Nonenzymic ADP-ribosylation of specific mitochondrial polypeptides, Proc. Nat. Acad. Sci. USA 81: 3929 (1984).

    Article  Google Scholar 

  37. B. M. Olivera, Z. W. Hall, Y. Anraku, J. R. Chien, and I. R. Lehman, On the mechanism of the polynucleotide joining reaction, Cold Spring Harbor Symp. Quant. Biol. 33: 27 (1968).

    Article  Google Scholar 

  38. R. I. Gumport and I. R. Lehman, Structure of the DNA ligase-adenylate intermediate; lysine (E-amino)-linked adenosine monophosphoramidate, Proc. Nat. Acad. Sci. USA 68: 2559 (1971).

    Article  Google Scholar 

  39. S. C. B. Yan, An unexpected twist in the reversal of ADP-ribosylation, Trends Biochem. Sci. 9: 331, (1984).

    Article  Google Scholar 

  40. H. Okayama, M. Honda, and O. Hayaishi, Novel enzyme from rat liver that cleaves an ADP-ribosyl histone linkage, Proc. Nat. Acad. Sci. USA 75: 2254 (1978).

    Article  Google Scholar 

  41. J. Oka, K. Ueda, O. Hayaishi, H. Komura, and K. Nakanishi, ADP-ribosyl protein lyase. Purification, properties and identification of the product, J. Biol. Chem. 259: 986 (1984).

    Google Scholar 

  42. K. P. Smith, R. C. Benjamin, J. Moss, and M. K. Jacobson, Identification of enzymatic activities which process protein bound mono(ADP-ribose), Biochem. Biophys. Res. Commun. 126: 136 (1985).

    Article  Google Scholar 

  43. M. R. Hammerman, V. A. Hansen, and J. J. Morrissey, ADP-ribosylation of canine renal brush border membrane vesicle proteins is associated with decreased phosphate transport, J. Biol. Chem. 257: 12380 (1982).

    Google Scholar 

  44. R. P. Lang, N. Yanagawa, E. P. Nord, L. Sakhrani, S. H. Lee, and L. G. Fine, Nucleotide inhibition of phosphate transport in the renal proximal tubule, Am. J. Physiol. 245: F263 (1983).

    Google Scholar 

  45. H. S. Tenenhouse and Y. L. Chu, Hydrolysis of nicotinamide-adenine dinucleotide by purified renal brush border membranes, Biochem. J. 204: 635 (1982).

    Google Scholar 

  46. M. R. Hammerman, V. M. Corpus, and J. J. Morrissey, NAD+-induced inhibition of phosphate transport in canine renal brush border membranes. Mediation through a process other than or in addition to NAD+ hydrolysis, Biochim. Biophys. Acta 732: 110 (1983).

    Article  Google Scholar 

  47. P. Gmaj, J. Biber, S. Angielski, G. Stange, and H. Murer, Intravesicular NAD has no effect on sodium-dependent phosphate transport in isolated renal brush border membrane vesicles, Pfluegers Arch. 400: 60 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Kempson, S.A., Dousa, T.P. (1986). Mechanisms of NAD Action in Regulation of Renal Brush Border Membrane Transport of Phosphate. In: Massry, S.G., Olmer, M., Ritz, E. (eds) Phosphate and Mineral Homeostasis. Advances in Experimental Medicine and Biology, vol 208. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5206-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5206-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5208-2

  • Online ISBN: 978-1-4684-5206-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics