Theoretical Mechanisms of Dietary Calcium’s Antihypertensive Action

  • Richard Bukoski
  • Philip Lucas
  • Tilman Drüeke
  • David McCarron
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)


Theoretical mechanisms underlying dietary calcium’s antihypertensive action are reviewed. Based upon known defects in the regulation of membrane Ca2+ transport and regulation of intracellular free Ca2+ concentration, we conclude that maneuvers that favorably modify calcium homeostasis such as dietary calcium supplementation or 1,25 (OH)2 vitamin D3 administration appear to favorably modify these defects. Consequent improvements in vascular smooth muscle function may mediate the reductions in blood pressure that follows chronic dietary calcium supplementation in experimental hypertension and in the clinical setting.


Essential Hypertension Dietary Calcium Dietary Calcium Intake Phosphate Depletion Chick Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hypertension: Is there a place for calcium? The Lancet i:359–361 (1986) (Editorial).Google Scholar
  2. 2.
    D. A. McCarron, C. D. Morris, and C. Cole, Dietary calcium in human hypertension, Science 217: 267–269 (1982).CrossRefGoogle Scholar
  3. 3.
    S. Ackley, E. Barrett-Connor, and L. Suarez, Dairy products calcium and blood pressure, Am J Clin Nutr 38: 457–461 (1983).Google Scholar
  4. 4.
    D. A. McCarron, C. D. Morris, H. J. Henry, and J. L. Stanton, Blood pressure and nutrient intake in the United States, Science 224: 1392–1398 (1984).CrossRefGoogle Scholar
  5. 5.
    W. R. Harlan, A. L. Hull, R. L. Schmouder, J. R. Landis, F. E. Thompson, and F. A. Larkin, Blood pressure and nutrition in adults, Am J Epidemiol 120: 17–28 (1984).Google Scholar
  6. 6.
    M. R. Garcia-Palmieri, R. Costas Jr., M. Cruz-Vidal, P. D. Sorlie, J. Tillotson, and R. J. Havlik, Milk consumption, calcium intake and decreased hypertension in Puerto Rico: Puerto Rico Heart Health Program Study, Hypertension 6: 322–328 (1984).Google Scholar
  7. 7.
    W. R. Harlan, A. L. Hull, R. L. Schmouder, J. R. Landis, F. A. Larking and F. E. Thompson, High blood pressure in older Americans: The First National Health and Nutrition Examination Survey, Hypertension 6: 802–809 (1985).Google Scholar
  8. 8.
    H. W. Gruchow, K. A. Sobocinski, and J. J. Barboriak, Alcohol, nutrient intake and hypertension in US adults, JAMA 253: 1567–1570 (1985).CrossRefGoogle Scholar
  9. 9.
    D. Reed, D. McGee, K. Yano, and J. Hankin, Diet, blood pressure and multicollinearity, Hypertension 7: 405–411 (1985).Google Scholar
  10. 10.
    D. Kromhout, E. B. Bosschieter, and C. Coulander, Potassium, calcium, alcohol intake and blood pressure: The Zutphen Study, Am J Clin Nutr 41: 1299–1304 (1985).Google Scholar
  11. 11.
    D. A. McCarron, and C. D. Morris, Blood pressure response to oral calcium in mild to moderate hypertension: A randomized, double-blind, placebo-controlled, corssover trial, Ann Intern Med 103: 825–831, (1985).Google Scholar
  12. 12.
    F. Luft, G. R. Aronoff, R. S. Sloan, N. S. Fienberg, and M. H. Weinberger, Short term augmented Ca intake has no effect on Na homeostasis in man, Clin Pharmacol Ther in press, (1986).Google Scholar
  13. 13.
    N. E. Johnson, E. L. Smith, and J. L. Freudenheim, Effects of blood pressure of calcium supplementation of women, Am J Clin Nutr 42: 12–17, (1985).Google Scholar
  14. 14.
    J. M. Belizan, J. Villar, 0. Pineda, et al., Reduction of blood pressure with calcium supplementation in young adults, JAMA 49: 1161–1165 (1983).CrossRefGoogle Scholar
  15. 15.
    S. Ayachi, Increased dietary calcium lowers blood pressure in the spontaneously hypertensive rat, Metabolism 28: 1234–1238 (1979).CrossRefGoogle Scholar
  16. 16.
    D. A. McCarron, N. N. Yung, B. A. Ugoretz, and S. Krutzik, Disturbances of Ca metabolism in the spontaneously hypertensive rat, Hypertension (suppl 1 ) 3: I162 - I167 (1981).Google Scholar
  17. 17.
    K. Lau, S. Chen, and B. Eby, Evidence for the role of PO4 deficiency in antihypertensive action of a high-Ca diet, Am J Physiol’246:H324–H331 (1984).Google Scholar
  18. 18.
    K. Lau, J. Zikos, M. Spirnak, and B. Eby, evidence for an intestinal mechanism in hypercalciuria of spontaneously hypertensive rat, Am J Physiol 247: E625–633 (1984).Google Scholar
  19. 19.
    D. A. McCarron, P. A. Lucas, R. S. Schneidman, R. LaCour, and T. Drueke, Blood pressure development of the spontaneously hypertensive rat after concurrent manipulations of Ca2+ and Na+: Relation to intestinal fluxes, J Clin Invest 76: 1147–1154 (1985).CrossRefGoogle Scholar
  20. 20.
    D. A. McCarron, Low serum concentrations of ionized calcium in patients with hypertension, New Engl J Med 307: 226–228 (1982).CrossRefGoogle Scholar
  21. 21.
    L. M. Resnick, J. H. Laragh, J. E. Sealey, and M. H. Alderman, Divalent cations in essential hypertension: Relations between serum ionized calcium, magnesium and plasma renin activity, New Engl J Med 309: 888–891 (1983).CrossRefGoogle Scholar
  22. 22.
    D. A. McCarron, Is calcium more important than sodium in the pathogenesis of essential hypertension? Hypertension 7: 607–627 (1985).Google Scholar
  23. 23.
    L. M. Resnick, J. P. Nicholson, and J. H. Laragh JH, Calcium metabolism, blood pressure and salt intakes in essential hypertension, Circulation 70: II - 1 (1984) (abstract).Google Scholar
  24. 24.
    M. R. Sowers, R. B. Wallace, and J. H. Lemke, The association of intakes of vitamin D and calcium with blood pressure among women, Am J Clin Nutr42: 135–142 (1985).Google Scholar
  25. 25.
    R. D. Boland, A. Norman, E. Ritz, and F. Haselbach, Presence of a 1,25dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts, Biochem Biophys Res Comm 128: 305 (1985).CrossRefGoogle Scholar
  26. 26.
    A. R. Boland, S. Gallop, and R. L. Boland, Effects of vitamin D3 on phosphate and calcium transport across and composition of skeletal muscle plasma cell membranes, Biochem Biophys Acta 733: 264 (1983).CrossRefGoogle Scholar
  27. 27.
    P. Shedl, D. L. Miller, J. M. Pape, R. L. Horst, and H. D. Wilson, Calcium and sodium transport and vitamin D metabolism in the spontaneously hypertensive rat, J Clin Invest 73: 980–986 (1984).CrossRefGoogle Scholar
  28. 28.
    P. A. Lucas, R. C. Brown, T. Drüeke, B. Lacour, J. A. Metz, and D. A. McCarron, Abnormal vitamin D metabolism and intestinal calcium transport in the SHR: Relation to bone calcium status, In press, JCI (1986).Google Scholar
  29. 29.
    J. F. E. Mann, J. Bommer, U. Ganten, and E. Ritz, Effects of parathyroidectomy and high dietary calcium intake in spontaneously hypertensive rat, Nephron (in press) (1986).Google Scholar
  30. 30.
    W. Zidek, H. Vetter, K. G. D9rst, H. Zumkley, and H. Losse, Intracellular Na+ and Ca2+ activities in essential hypertension, Clin Sci 63: 413–435 (1982).Google Scholar
  31. 31.
    W. Zidek, H. Vetter, H. Zumkley, and H. Losse, Intracellular cation activities and concentrations in spontaneously hypertensive and normotensive rats, Clin Sci 61: 415–435 (1981).Google Scholar
  32. 32.
    M. P. Blaustein, Sodium ions, calcium ions, blood pressure regulation and hypertension: A reassessment and a hypothesis, Am J Physiol 232: C165 - C173 (1977).Google Scholar
  33. 33.
    F. F. Vincenzi, C. D. Morris, L. B. Kinsel, M. Kenny, D. A. McCarron, Decreased in vitro Ca2+ ATP-ase activity in red blood cells of hypertensive subjects, Hypertension (in press) (1986).Google Scholar
  34. 34.
    R. D. Bukoski, and D. A. McCarron, Altered aortic reactivity and lowered blood pressure associated with high 2+ intake in the SHR, Personal communication (1986).Google Scholar
  35. 35.
    R. D. Bukoski, S. B. Plant, and D. A. McCarron, Aortic Ca2+ metabolism and blood pressure are altered by Ca2+ intake in the SHR, Personal communication (1986).Google Scholar
  36. 36.
    D. A. McCarron, P. Lucas, B. Lacour, and T. Drüeke, Ca2+ efflux rate constant (°KCa) in isolated SHR enterocytes, Abstract presented to the 18th annual iheetings of the American Society of Nephrology (1985).Google Scholar
  37. 37.
    K. Aoki, Y. Yamashita, N. Tornita, K. Tazumi, and K. Hotta, ATPase activity and Ca binding ability of subcellular membranes of arterial smooth muscle in the spontaneously hypertensive rat, Jpn Heart J15: 180–181 (1974).CrossRefGoogle Scholar
  38. 38.
    M. A. Devnyck, M. G. Pernollet, A. M. Nunez, and P. Meyer, Calcium binding alteration in plasma membrane from various tissues of spontaneously hypertensive rat, Clin Exp Hyp 3: 797–807 (1981).CrossRefGoogle Scholar
  39. 39.
    C. Y. Kwan, L. Belbeck, and E. E. Daniel, Abnormal biochemistry of vascular smooth muscle plasma membrane isolated from hypertensive rats, Molec Pharmacol 17: 137–140 (1980).Google Scholar
  40. 40.
    C. Y. Kwan, and E. E. Daniel, Arterial muscle abnormalities of hydralizine-treated spontaneously hypertensive rats, Eur J Pharmacol 82: 187–190 (1982).CrossRefGoogle Scholar
  41. 41.
    S. Shibata, M. Kochii, and T. Taniguchi, Calcium fluxes and binding in the aortic smooth muscle from the spontaneously hypertensive rat, Blood Vessels 12: 279–289 (1975).Google Scholar
  42. 42.
    R. C. Webb, and R. C. Bhalla, Altered calcium sequestration by subcellular fractions of vascular smooth muscle from spontaneously hypertensive rats, J Molec Cell Cardiol 8: 651–661 (1976).CrossRefGoogle Scholar
  43. 43.
    P. Erne, P. Bolli, E. Burgisser, and F. R. Buhler, Correlation of platelet calcium with blood pressure: Effect of antihypertensive therapy, N Engl J Med 310: 1084–1088 (1984).CrossRefGoogle Scholar
  44. 44.
    G. Bruschi, M. E. Bruschi, M. Caroppo, G. Orlandini, M. Spaggiari, and A. Caotatarta, Cytoplasmic free [Ca2+ ] is increased in the platelets of spontaneously hypertensive rats and essential hypertensive patients, Clin Sci 68: 179–184 (1985).Google Scholar
  45. 45.
    D. A. McCarron, P. Pingree, R. J. Rubin, S. M. Gaucher, M. Molitch, and S. Krutzik, Enhanced parathyroid function in essential hypertension: A homeostatic response to a urinary calcium leak, Hypertension 2: 162–168 (1980).Google Scholar
  46. 46.
    J. A. Cox, M. CorniT, E. A. Stein, Activation of human erythrocyte Ca2+ –dependent Mg -activated ATPase by calmodulin and calcium: Quantitative analysis, Proc Natl Acad Sci USA 79: 4265–4269 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Richard Bukoski
  • Philip Lucas
    • 2
  • Tilman Drüeke
    • 2
  • David McCarron
    • 1
  1. 1.Division of Nephrology and HypertensionOregon Health Sciences UniversityPortlandUSA
  2. 2.INSERM, U90Hôpital NeckerParisFrance

Personalised recommendations